РЕШЕНИЕ
AA₁ = 6/√2 дм =3√2 дм
BB₁ = √2 дм
< АОА1 и <BOB1 вертикальные -равны
АА1 || BB1 || CC1 - параллельные
указанные прямые отсекают на АВ и А1В1 пропорциональные отрезки
Это следствие из теоремы Фалеса о параллельных прямых пересекающих стороны угла.
тогда треугольники AOA1 ~ COC1 ~BOB1 подобные
AO/OB=AA1/BB1=3√2 /√2 = 3 : 1
пусть АВ=х
тогда
АО=3/4 х
ОВ= х
АС=СВ= 1/2 х
СО= АО-АС=3/4 х - 1/2 х=3/4 х - 2/4 х=1/4 х
теперь снова треугольники AOA1 ~ COC1 подобные
AA1/СС1= AO/СO=3/4х / 1/4х = (3/4) / (1/4) = 3 : 1
CC1=1/3 * AA1 = 1/3 *3√2 =√2 дм (возможна запись 1/3 *6/√2 = 2/√2 дм )
ответ √2 дм или 2/√2 дм
сделаем построение - сразу все видно
точки K L M N - середины сторон прямоугольника АВСД
проведем прямые LN (параллельна АВ и СД) и КМ (параллельна ВС и АД)-
они образуют равные прямоугольники (стороны попарно равны)
KBLO с диагональю KL
OLCM с диагональю LM
NOMD с диагональю NM
АKОN с диагональю KN
и так понятно, что диагонали в равных прямоугольниках равны
KL=LM=NM=KN
но если кто сомневается , то можно доказать через теорему Пифагора
KL^2=KB^2+BL^2
LM^2=LC^2+CM^2
NM^2=MD^2+ND^2
KN^2=AN^2+AK^2
правые части этих выражений равны - это все половинки сторон
а значит равны и левые части
итак все стороны нового четырехугольника равны - это основное свойство РОМБА
если бы начальной фигурой был квадрат - то внутри тоже получился бы квадрат - но у нашего ромба углы 60-120-60-120
РЕШЕНИЕ
AA₁ = 6/√2 дм =3√2 дм
BB₁ = √2 дм
< АОА1 и <BOB1 вертикальные -равны
АА1 || BB1 || CC1 - параллельные
указанные прямые отсекают на АВ и А1В1 пропорциональные отрезки
Это следствие из теоремы Фалеса о параллельных прямых пересекающих стороны угла.
тогда треугольники AOA1 ~ COC1 ~BOB1 подобные
AO/OB=AA1/BB1=3√2 /√2 = 3 : 1
пусть АВ=х
тогда
АО=3/4 х
ОВ= х
АС=СВ= 1/2 х
СО= АО-АС=3/4 х - 1/2 х=3/4 х - 2/4 х=1/4 х
теперь снова треугольники AOA1 ~ COC1 подобные
AA1/СС1= AO/СO=3/4х / 1/4х = (3/4) / (1/4) = 3 : 1
CC1=1/3 * AA1 = 1/3 *3√2 =√2 дм (возможна запись 1/3 *6/√2 = 2/√2 дм )
ответ √2 дм или 2/√2 дм
сделаем построение - сразу все видно
точки K L M N - середины сторон прямоугольника АВСД
проведем прямые LN (параллельна АВ и СД) и КМ (параллельна ВС и АД)-
они образуют равные прямоугольники (стороны попарно равны)
KBLO с диагональю KL
OLCM с диагональю LM
NOMD с диагональю NM
АKОN с диагональю KN
и так понятно, что диагонали в равных прямоугольниках равны
KL=LM=NM=KN
но если кто сомневается , то можно доказать через теорему Пифагора
KL^2=KB^2+BL^2
LM^2=LC^2+CM^2
NM^2=MD^2+ND^2
KN^2=AN^2+AK^2
правые части этих выражений равны - это все половинки сторон
а значит равны и левые части
итак все стороны нового четырехугольника равны - это основное свойство РОМБА
если бы начальной фигурой был квадрат - то внутри тоже получился бы квадрат - но у нашего ромба углы 60-120-60-120