После победы над персами наступает блестящая эпоха в афин. афины становятся могущественной морской державой с высокоразвитыми ремеслами, кораблестроением и торговлей. много свободных и рабов из пленных, захваченных во время войны, работало в мастерских, рудниках, на строительстве, во флоте. после окончания войн источником обогащения афинской казны стал морской союз, организованный афинами для борьбы с персией на море. денежные взносы союзников, предназначавшиеся на постройку военных кораблей, афиняне стали расходовать на нужды своего государства. v век до нашей эры называют «золотым веком» в афин. в это время афины обогатили мировую культуру такими ценностями, которые, по словам афинского , достойны быть «предметом удивления для современников и потомков» . это время расцвета демократии. все свободные граждане получали право участвовать в государством. главным государственным учреждением было народное собрание, в котором могли участвовать все афинские граждане. народное собрание созывалось обычно 3 раза в месяц, а в исключительных случаях еще чаще.
дві прямі в просторі називаються паралельними, якщо вони лежать в одній площині й не перетинаються. прямі, які не лежать в одній площині, називаються мимобіжними. зверніть увагу: «не лежать в одній площині» і «лежать у різних площинах» — це різні твердження. наприклад, паралельні прямі a і b лежать у різних площинах і (див. рисунок), але через них можна провести площину, яка міститиме a і b водночас. image8756image 167 fmt.jpeg
для мимобіжних прямих (див. рисунок) не існує такої площини, у якій вони лежали б водночас. 1.jpeg
можна довести, що всі прямі, які перетинають дві паралельні прямі, лежать в одній площині. теорема. через точку, яка не лежить на даній прямій, можна провести пряму, паралельну даній, і тільки одну.
ответ:
объяснение:
дві прямі в просторі називаються паралельними, якщо вони лежать в одній площині й не перетинаються. прямі, які не лежать в одній площині, називаються мимобіжними. зверніть увагу: «не лежать в одній площині» і «лежать у різних площинах» — це різні твердження. наприклад, паралельні прямі a і b лежать у різних площинах і (див. рисунок), але через них можна провести площину, яка міститиме a і b водночас. image8756image 167 fmt.jpeg
для мимобіжних прямих (див. рисунок) не існує такої площини, у якій вони лежали б водночас. 1.jpeg
можна довести, що всі прямі, які перетинають дві паралельні прямі, лежать в одній площині. теорема. через точку, яка не лежить на даній прямій, можна провести пряму, паралельну даній, і тільки одну.