№1 КМ и КН отрезок касательных проведенных из точки К к окружности с центром О.Найти КМ иКН если ОК=12 и угол МОН=120 градусам. №2 Диагональ ромба ABCD пересекаются в точке О.Доказать что прямая ВD касается окружности с центром А и радиусом ОС
1. Отрезки касательных, проведенных из одной точки, равны, т. е. КМ=КН КО - биссектриса угла МОН, след-но тр-ники КОМ и КОН - прямоугольные, с углами= 90, 60, 30 град. ОМ=ОН=6см. , КМ=КН=sqrt(144-36)=7sqrt2 2. Диагонали ромба точкой пересечения делятся пополам, т. е. АО=ОС, отсюда диагональ ромба ВD касается окружности с центром А и радиусом ОС
Если известны длины всех сторон , то высоту найдем по формуле
h = 2/a √p(p-a)(p-b)(p-c),
где h - длина высоты треугольника, p - полупериметр, a - длина стороны, на которую падает высота, b и c - длины двух других сторон треугольника.
1) р=(17+65+80):2=81
Наименьшая высота падает на наибольшую сторону, поэтому
h = 2/80 * √(81*64*16*1) = 1/40 * √82944 = 1/40 * 288 = 7,2
2) р=(8+6+4):2=9
Наименьшая высота падает на наибольшую сторону, поэтому
h = 2/8 * √(9*1*3*5) = 1/4 * √135 = 1/4 * 3√15= 0,75√15
3) р=(24+25+7):2=28
Наименьшая высота падает на наибольшую сторону, поэтому
h = 2/25 * √(28*4*3*21) = 2/25 * √7056 = 2/25 * 84 = 6,72
4) ) р=(30+34+16):2=40
Наименьшая высота падает на наибольшую сторону, поэтому
h = 2/34 * √(40*10*6*24) = 1/17 * √57600 = 1/17 * 240 = 1 17/70.
КМ и КН отрезок касательных проведенных из точки К к окружности с центром О.Найти КМ иКН если ОК=12 и угол МОН=120 градусам.
№2
Диагональ ромба ABCD пересекаются в точке О.Доказать что прямая ВD касается окружности с центром А и радиусом ОС
1. Отрезки касательных, проведенных из одной точки, равны, т. е. КМ=КН
КО - биссектриса угла МОН, след-но тр-ники КОМ и КОН - прямоугольные, с углами= 90, 60, 30 град.
ОМ=ОН=6см. , КМ=КН=sqrt(144-36)=7sqrt2
2. Диагонали ромба точкой пересечения делятся пополам, т. е. АО=ОС, отсюда диагональ ромба ВD касается окружности с центром А и радиусом ОС