Два внешних угла треугольника при разных вершинах равны. периметр треугольника равен 86см а одно из сторон 20 см найдите две другие стороны треугольника нужен ответ
Медианы АМ и СК треугольнике АВС перпендикулярны. Найти стороны треугольника, если АМ= 9, СК= 12. Решение: Медианы треугольника точкой пересечения О делятся в отношении 2:1, считая от вершины. Дано: АМ=9, СК=12. Значит АО=9*(2/3)=6, ОМ=3, СО=12*(2/3)=8, ОК=4. В прямоугольном треугольнике АОС (угол АОС=90° - дано) гипотенуза АС по Пифагору равна АС=√(АО²+ОС²) или АС=√(6²+8²)=10. В прямоугольном треугольнике АОК (угол АОК=90° - дано) гипотенуза АК по Пифагору равна АК=√(АО²+ОК²) или АК=√(6²+4²)=2√13. АВ=2*АК, так как СК - медиана. АВ=4√13. В прямоугольном треугольнике СОМ (угол СОМ=90° - дано) гипотенуза СМ по Пифагору равна СМ=√(ОМ²+ОС²) или СМ=√(3²+8²)=√73. ВС=2*СМ, так как АМ - медиана. ВС=2√73. ответ: стороны треугольника равны АС=10; АВ=4√13≈14,4; ВС=2√73≈17.
Проверка: Три медианы делят треугольник на 6 равновеликих треугольника. Площадь одного из них равна Saok=(1/2)*6*4=12. значит Sabc=6*12=72. В то же время по Герону Sabc=√[p(p-a)(p-b)(p-c)], где р - полупериметр треугольника, а,b,c - его стороны. Полупериметр равен: р=(2√73+4√13+10)/2=(√73+2√13+5). Подставим найденные значения в формулу: Sabc=√[(√73+(2√13+5))*(2√13+5-√73)*(√73+(5-2√13))*(√73-(5-2√13))]= √[((2√13+5)²-73)*(73-(5-2√13)²)]=√[(52+25+20√13-73)*(73-25+20√13-52)]= √[(20√13+4)*(20√13-4)]=√(5200-16)=72. Итак, стороны треугольника найдены правильно.
6) Хорды AB и CD пересекаются в точке E, тогда верно равенство
АE·BE=CE·DE
7) Длину окружности можно вычислить по двум формулам: C = 2πr или C = πd, где π – число «пи» (математическая константа, приблизительно равная 3,14) X Источник информации , r – радиус окружности, d – диаметр окружности.
8) Формула для вычисления площади круга
1) Площадь круга равна произведению квадрата радиуса на число пи (3.1415). 2) Площадь круга равна половине произведения длины ограничивающей его окружности на радиус.
9)Окружность называется вписанной в треугольник, если она касается всех его сторон. Окружность называется описанной около треугольника, если она проходит через все его вершины. Теорема 1. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.
Найти стороны треугольника, если АМ= 9, СК= 12.
Решение:
Медианы треугольника точкой пересечения О делятся в отношении 2:1, считая от вершины.
Дано: АМ=9, СК=12. Значит АО=9*(2/3)=6, ОМ=3, СО=12*(2/3)=8, ОК=4.
В прямоугольном треугольнике АОС (угол АОС=90° - дано) гипотенуза АС по Пифагору равна АС=√(АО²+ОС²) или АС=√(6²+8²)=10.
В прямоугольном треугольнике АОК (угол АОК=90° - дано) гипотенуза АК по Пифагору равна АК=√(АО²+ОК²) или АК=√(6²+4²)=2√13. АВ=2*АК, так как СК - медиана. АВ=4√13.
В прямоугольном треугольнике СОМ (угол СОМ=90° - дано) гипотенуза СМ по Пифагору равна СМ=√(ОМ²+ОС²) или СМ=√(3²+8²)=√73. ВС=2*СМ, так как АМ - медиана. ВС=2√73.
ответ: стороны треугольника равны АС=10; АВ=4√13≈14,4; ВС=2√73≈17.
Проверка:
Три медианы делят треугольник на 6 равновеликих треугольника.
Площадь одного из них равна Saok=(1/2)*6*4=12. значит Sabc=6*12=72.
В то же время по Герону Sabc=√[p(p-a)(p-b)(p-c)], где р - полупериметр треугольника, а,b,c - его стороны. Полупериметр равен:
р=(2√73+4√13+10)/2=(√73+2√13+5).
Подставим найденные значения в формулу:
Sabc=√[(√73+(2√13+5))*(2√13+5-√73)*(√73+(5-2√13))*(√73-(5-2√13))]=
√[((2√13+5)²-73)*(73-(5-2√13)²)]=√[(52+25+20√13-73)*(73-25+20√13-52)]=
√[(20√13+4)*(20√13-4)]=√(5200-16)=72.
Итак, стороны треугольника найдены правильно.
6) Хорды AB и CD пересекаются в точке E, тогда верно равенство
АE·BE=CE·DE
7) Длину окружности можно вычислить по двум формулам: C = 2πr или C = πd, где π – число «пи» (математическая константа, приблизительно равная 3,14) X Источник информации , r – радиус окружности, d – диаметр окружности.
8) Формула для вычисления площади круга
1) Площадь круга равна произведению квадрата радиуса на число пи (3.1415). 2) Площадь круга равна половине произведения длины ограничивающей его окружности на радиус.
9)Окружность называется вписанной в треугольник, если она касается всех его сторон. Окружность называется описанной около треугольника, если она проходит через все его вершины. Теорема 1. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.