Сумма острых углов в прямоугольном треугольнике 90 градусов, поэтому сумма их половин 45 градусов, и углы между биссектрисами острых углов будут 45 градусов и 135 (ну, там 4 угла, пары вертикальных... в сумме 180, конечно). Значит, речь идет не о двух острых углах, а о прямом и остром. Тем же определяем, что углы между биссектрисами прямого и острого угла Ф равны Ф/2 + 45 градусов и 135 - Ф/2 градусов.в первом случае Ф =2*(130 - 45) = 85 градусов, а второй угол треугольника 90 - Ф = 5 градусов.Во втором случае 135 - Ф/2 = 92.5 просто получается Ф > 90. Поэтому,пользуясь первым случаем, получаем, что углы равны 85 и 5.
A(0;0;0) ; B(0 ;1; 0) ; C(1;1;0) ; D(1;0;0) ;
A₁(0;0;1) ;B₁(0 ;1; 1) ; C₁(1;1;1) ; D₁(1;0;1) .
AD₁(1;0;1) и BA₁(0 ; -1;1).
Скалярное произведение
AD₁. BA₁ = 1*0 +0*(-1) +1*1 =1 ;
AD₁. BA₁ =|AD₁|. |BA₁|*cos(AD₁^BA₁) (определение скалярного произведения) ;
* * * модуль(длина) векторов |AD₁| =√(1²+0²+1²) =√2 ; |BA₁| = √(0²+(-1)²+1²) =√2 * * *
√2*√2cosα =1 ;
cosα =1/2.
α =60°.
BD(1; -1; 0) и DC₁(0;1;1).
BD*DC₁=1*0 +(-1)*1+0*1= -1.
√2*√2 cosβ = - 1 ;
cosβ = -1/2 ;
β = 120°.