Две окружности касается внешним образом. Радиус одной окружности в 5 раза больше радиуса другой окружности. Найдите диаметром окружностей, если расстояние между их центрами ровно 18см.НУЖЕН ЧЕРТЕЖЬ.
ΔАВС - равнобедренный , АС - основание , ∠В - противолежащий основанию. По свойствам равнобедренного треугольника: АВ=ВС - боковые стороны равны ∠А=∠С , т.к. у равнобедренного треугольника углы при основании равны. Биссектриса АН делит ∠А пополам ⇒ ∠ВАH=∠HAC
ΔАНС : АН=АС - по условию ⇒ равнобедренный. ∠НАС= х , ∠Н=∠С =2х - т.к. углы при основании . Сумма углов треугольника = 180° х+ 2х+2х=180 5х= 180 х=180/5 = 36° - ∠НАС ∠Н= ∠С= 36×2= 72 ° ⇒ Углы при основании ΔАВС ∠А=∠С= 72° ∠В= 180° - 72°×2= 180° - 144°=36° ответ: ∠В= 36°.
3 АВ=ВМ, т.к. угол М тоже 45°, тогда МС=ВМ-3=АВ-3, а периметр 2АВ+2(АВ+МС)=24; 2АВ+2(АВ+АВ-3)=24; 6АВ-6=24; АВ=30/6=5/см/, АВ= СD=5см; тогда МС=5-3=2/см/, AD=ВС=5+2=7/см/
4. ∠ОКР=10° как внутр. накрест лежащие при MN║РК и секущей NK;
∠ОКМ=90°-10°=80°;
∠ОКМ=∠ОNP=80°как внутр. накрест лежащие при MК║NР и и секущей NK;
∠NPK=∠NMK=∠NPK=90°, т.к. противолежащие углы в параллелограмме равны. но тогда это треугольник, в нем диагонали равны и в точке пересечения делятся пополам.
∠ОМК=∠ОКМ=80°, ∠ОМN=∠ONM=10°; ∠МОN=∠РОК=180°-10°-10°=160°, рвны как вертикальные, а другая пара вертикальных при вершине О равна по 20°, можно было ее получить и по свойству внешнего угла при вершине О.
По свойствам равнобедренного треугольника:
АВ=ВС - боковые стороны равны
∠А=∠С , т.к. у равнобедренного треугольника углы при основании равны.
Биссектриса АН делит ∠А пополам ⇒ ∠ВАH=∠HAC
ΔАНС : АН=АС - по условию ⇒ равнобедренный.
∠НАС= х , ∠Н=∠С =2х - т.к. углы при основании .
Сумма углов треугольника = 180°
х+ 2х+2х=180
5х= 180
х=180/5 = 36° - ∠НАС
∠Н= ∠С= 36×2= 72 ° ⇒
Углы при основании ΔАВС ∠А=∠С= 72°
∠В= 180° - 72°×2= 180° - 144°=36°
ответ: ∠В= 36°.
3 АВ=ВМ, т.к. угол М тоже 45°, тогда МС=ВМ-3=АВ-3, а периметр 2АВ+2(АВ+МС)=24; 2АВ+2(АВ+АВ-3)=24; 6АВ-6=24; АВ=30/6=5/см/, АВ= СD=5см; тогда МС=5-3=2/см/, AD=ВС=5+2=7/см/
4. ∠ОКР=10° как внутр. накрест лежащие при MN║РК и секущей NK;
∠ОКМ=90°-10°=80°;
∠ОКМ=∠ОNP=80°как внутр. накрест лежащие при MК║NР и и секущей NK;
∠NPK=∠NMK=∠NPK=90°, т.к. противолежащие углы в параллелограмме равны. но тогда это треугольник, в нем диагонали равны и в точке пересечения делятся пополам.
∠ОМК=∠ОКМ=80°, ∠ОМN=∠ONM=10°; ∠МОN=∠РОК=180°-10°-10°=160°, рвны как вертикальные, а другая пара вертикальных при вершине О равна по 20°, можно было ее получить и по свойству внешнего угла при вершине О.