Две окружности касаются друг друга в точке А. Произвольная прямая, проходящая чрез А, вторично пересекает одну окружность в точке В, а другую в точке С. Докажите, что центральные углы этих окружностей, соответсвующие хордам АВ и АС, равны.
(Тут должны быть когда окружности касаются внешним и внутренним)
сделаем построение - сразу все видно
точки K L M N - середины сторон прямоугольника АВСД
проведем прямые LN (параллельна АВ и СД) и КМ (параллельна ВС и АД)-
они образуют равные прямоугольники (стороны попарно равны)
KBLO с диагональю KL
OLCM с диагональю LM
NOMD с диагональю NM
АKОN с диагональю KN
и так понятно, что диагонали в равных прямоугольниках равны
KL=LM=NM=KN
но если кто сомневается , то можно доказать через теорему Пифагора
KL^2=KB^2+BL^2
LM^2=LC^2+CM^2
NM^2=MD^2+ND^2
KN^2=AN^2+AK^2
правые части этих выражений равны - это все половинки сторон
а значит равны и левые части
итак все стороны нового четырехугольника равны - это основное свойство РОМБА
если бы начальной фигурой был квадрат - то внутри тоже получился бы квадрат - но у нашего ромба углы 60-120-60-120
ВМ=КD (дано) и треугольники ВМО и ОDK равны по двум сторонам и углу между ними (ВМ=KD, ВО=ОD,<МBO=<ODК как накрест лежащие при параллельных ВС и AD и секущей ВD.
Следовательно, МО=ОК (соответственные стороны равных треугольников), что и требовалось доказать.