Две окружности касаются друг с другом внешним образом. Расстояние между их центрами равно 30 см. Радиус первой окружности равен радиусу второй окружности. Найдите этот радиус.Две окружности касаются друг с другом внутренним образом. Расстояние между их центрами равно 5 см. Радиус большей из окружностей равен 12 см. Найдите радиус меньшей,
/ ' \ BD - апофема
/ ' \ BH =Hпирамиде =√14 см
/ ' \ CD = cтороне нижнего основания
` AB = стороне верхнего основания
C H D a=6см - диагональ нижнего основания =10см
b =10cм диагональ верхнего основания
2AB² =a² =6²=36; AB = 3√2
2CD²=b²=100; CD =5√2
HD =(CD-AB)/2 =√2
BD² = BH² +HD² = 14+2=16
BD=4 (cм)
2) Пусть угол KMA = x, а угол MKA = y, тогда x+y=180-105=75. Угол PKM = 2x, А PMK = 2y, т.е. их сумма равна 2(x+y) = 150, тогда угол KMP = 30. ответ: 30°
3) AB=CD, углы ABC=CDA и BCD=DAB, т.к. ABCD - параллелограмм. Углы BAM=DAM=DCK=BCK, т.к. CK и AM - биссектрисы. В итоге: углы ABM=CDK, KCD=BAM, AB=CD, значит треугольники равны по УСУ(2 угла и сторона между ними.)