Две окружности касаются в точке p. через точку p проведены две секущие, пересекающие первую окружность в точках a1 и b1, а вторую - в точках a2 и b2. докажите, что треугольник pa1b1 подобен треугольнику pa2b2
Обозначим параллелограмм ABCD ,биссектриса проведена из угла В к стороне AD в точке M .Угол А =180°-150°=30°(сумма соседних углов параллелограмма 180°) .∠ABM равен углу BMC =150°÷2=75°(так как BM - биссектриса) .∠BMA треугольника ABM равен 180°-75°-30°=75°,значит треугольник ABM -равнобедренный с основанием BM ,поэтому AB=AM=16 см .AD=AM+MD=16+5= 21 см .Площадь параллелограмма ABCD найдём по формуле S=a×b×sinα(где а и b стороны параллелограмма ,а α-угол между ними).S=16×21×sin30°=336×0,5=168 см² .
Рассмотрим прямоугольные треугольники АН1В и СН2В. Зная, что сумма острых углов прямоугольного треугольника равна 90 градусов, выразим углы АВН1 и СВН2: <ABH1=90-<A, <CBH2=90-<C, но <A=<C как противоположные углы параллелограмма, следовательно <ABH1=<CBH2. Используем один из признаков равенства прямоугольных треугольников: если катет и прилежащий к нему острый угол одного прямоугольного треуг-ка соответственно равен катету и прилежащему к нему острому углу другого, то такие треугольники равны. В нашем случае: - ВН1=ВН2 по условию; - углы АВН1 и СВН2 равны как показано выше. Значит, треуг-ки АН1В и СН2В равны, и АВ=СВ=СЕ=АЕ. Параллелограмм, у которого все стороны равны - ромб. АВСЕ - ромб.
<ABH1=90-<A, <CBH2=90-<C, но
<A=<C как противоположные углы параллелограмма, следовательно
<ABH1=<CBH2.
Используем один из признаков равенства прямоугольных треугольников: если катет и прилежащий к нему острый угол одного прямоугольного треуг-ка соответственно равен катету и прилежащему к нему острому углу другого, то такие треугольники равны. В нашем случае:
- ВН1=ВН2 по условию;
- углы АВН1 и СВН2 равны как показано выше.
Значит, треуг-ки АН1В и СН2В равны, и АВ=СВ=СЕ=АЕ. Параллелограмм, у которого все стороны равны - ромб. АВСЕ - ромб.