Две окружности касаются внешним образом. Радиус одной в 2 раза больше радиуса другой. Найти диаметры этих окружностей, если расстояние между их центрами равно 15 см.
1. Радиус r вписанной в прямоугольный треугольник определяется по формуле : r =(a+b-c)/2 =(3+4 -√(3²+4²))/2 =(3+4-5)/2 =1. S =π*r₁² ⇒ r₁ =√(S/π)=√(25/8π) =√((25/4)/2π) = √6,25/√(2π) < 1 = r. значит можно. 2. Не может. k₁ , 2k₁ ; k₂ , 2k₂ ; k₃ , 2k₃ . Если : AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁. BE : EC = 1 : 2 ⇒BE = k₂ , EC = 2k₂ ; BC=3k₂. CF : FA = 1 : 2 ⇒CF = k₃ , FA = 2k₃ ; AC =3k₃. DB =BE ⇒k₂ =2k₁ ; EC =CF ⇒k₃ =2k₂ =4k₁ . AB =3k₁; BC =3k₂ =6k₁ ; AC =3k₃=3*4k₁ =12k₁ ⇒ AB+BC< AC ,что невозможно.
Если : AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁. BE : EC = 2 : 1 ⇒BE = 2k₂ , EC = k₂ ; BC=3k₂. DB =BE ⇒2k₁=2k₂ ⇒AB =BC тогда точка касания F середина AC.
2)Составить уравнение окружности с центром в точке А(4;5),которая касается прямой. Прямая не указана. Поэтому неизвестен радиус (х-4)²+(у-5)²=R² 3) Точки пересечения окружности х²+у²=9 с осью абсцисс : у=0 ⇒ х²+0²=9 ⇒х²=9 ⇒ х=-3 или х=3 (-3;0) и (3;0) с осью ординат: х=0 ⇒ у²=9 ⇒ у=-3 или у =3 (0;-3) и (0;3) 4) Запишем уравнение прямой 3х-2у+5=0 в виде у= kx+b 3х-2у+5=0 ⇒ Параллельные прямые имеют одинаковые угловые коэффициенты. Угловой коэфиициент прямой
Уравнение всех прямых параллельных прямой имеет вид Чтобы найти значение параметра b принимаем во внимание тот факто, что прямая проходит через точку (-2;2) х=-2 у=2 Подставим в выражение
b=2+3=5 ответ. 5) х²+у²-4х+2у+1=0 Чтобы найти центр окружности выделим полные квадраты: х²-4х+у²+2у+1=0 Прибавим 4 слева и справа х²-4х+4+у²+2у+1=4 (х-2)²+(у+1)²=4 Координаты центра окружности (2; -1) Уравнение прямой имеет вид у=kx+b Точка (1;2) принадлежит прямой, её координаты удовлетворяют уравнению 2=k·1+b (*) Центр окружности (2;-1) принадлежит прямой, координаты удовлетворяют уравнению -1=k·2+b (**) Решаем систему двух уравнений (*) и (**):
Радиус r вписанной в прямоугольный треугольник определяется по формуле : r =(a+b-c)/2 =(3+4 -√(3²+4²))/2 =(3+4-5)/2 =1.
S =π*r₁² ⇒ r₁ =√(S/π)=√(25/8π) =√((25/4)/2π) = √6,25/√(2π) < 1 = r.
значит можно.
2. Не может.
k₁ , 2k₁ ; k₂ , 2k₂ ; k₃ , 2k₃ .
Если :
AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁.
BE : EC = 1 : 2 ⇒BE = k₂ , EC = 2k₂ ; BC=3k₂.
CF : FA = 1 : 2 ⇒CF = k₃ , FA = 2k₃ ; AC =3k₃.
DB =BE ⇒k₂ =2k₁ ;
EC =CF ⇒k₃ =2k₂ =4k₁ .
AB =3k₁; BC =3k₂ =6k₁ ; AC =3k₃=3*4k₁ =12k₁
⇒ AB+BC< AC ,что невозможно.
Если :
AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁.
BE : EC = 2 : 1 ⇒BE = 2k₂ , EC = k₂ ; BC=3k₂.
DB =BE ⇒2k₁=2k₂ ⇒AB =BC тогда точка касания F середина AC.
2)Составить уравнение окружности с центром в точке А(4;5),которая касается прямой.
Прямая не указана. Поэтому неизвестен радиус
(х-4)²+(у-5)²=R²
3) Точки пересечения окружности х²+у²=9
с осью абсцисс :
у=0 ⇒ х²+0²=9 ⇒х²=9 ⇒ х=-3 или х=3
(-3;0) и (3;0)
с осью ординат:
х=0 ⇒ у²=9 ⇒ у=-3 или у =3
(0;-3) и (0;3)
4) Запишем уравнение прямой 3х-2у+5=0
в виде у= kx+b
3х-2у+5=0 ⇒
Параллельные прямые имеют одинаковые угловые коэффициенты.
Угловой коэфиициент прямой
Уравнение всех прямых параллельных прямой
имеет вид
Чтобы найти значение параметра b принимаем во внимание тот факто, что прямая проходит через точку (-2;2)
х=-2 у=2
Подставим в выражение
b=2+3=5
ответ.
5) х²+у²-4х+2у+1=0
Чтобы найти центр окружности выделим полные квадраты:
х²-4х+у²+2у+1=0
Прибавим 4 слева и справа
х²-4х+4+у²+2у+1=4
(х-2)²+(у+1)²=4
Координаты центра окружности (2; -1)
Уравнение прямой имеет вид
у=kx+b
Точка (1;2) принадлежит прямой, её координаты удовлетворяют уравнению
2=k·1+b (*)
Центр окружности (2;-1) принадлежит прямой, координаты удовлетворяют уравнению
-1=k·2+b (**)
Решаем систему двух уравнений (*) и (**):
Вычли из первого уравнения второе
ответ. у=-3x-1