Две окружности касаются внутренним образом в точке K, причём меньшая окружность проходит через центр O большей. Диаметр AB большей окружности вторично пересекает меньшую окружность в точке C, отличной от K. Лучи KO и KC вторично пересекают большую окружность в точках D и E соответственно. Точка B лежит на дуге EK большей окружности, не содержащей точку D. а) Докажите, что прямые DE и AB параллельны. б) Известно, что sin ∠KOB = . Прямые ДВ и ЕК пересекаются в точке L. Найдите отношение EL : LK.
Объяснение:
∠DEK опирается на диаметр DK большой окружности.
∠ОВК опирается на диаметр ОК малой окружности.
Все вписанные углы, опирающиеся на диаметр, прямые. Следовательно,
∠DEK = ∠ОВК = 90°. Из этого следует, что
DE ⊥EK и АВ ⊥ЕК.
Теорема: если две прямые на плоскости перпендикулярны одной и той же прямой, то они параллельны. Значит, DE ║ АВ, ч.т.д.
б) Так как DE ║ АВ, то ∠ВОК = ∠ЕDК как соответственные.
Диаметр АВ ⊥ЕК. Если хорда перпендикулярна диаметру, то диаметр проходит через её середину, т.е.
ЕС = СК и т. В - середина дуги ЕК и, следовательно,
DB - биссектриса ∠EDK прямоугольного ΔDEK.
Теорема: Биссектриса угла треугольника делит его противоположную сторону в пропорции, равной отношению прилежащих к данному углу сторон, т.е.
ЕL : LK = DE : DK = cos(∠KDE) = cos(∠KOB) = √(1 - sin²(∠KOB) =
= √1 -7/16 = √9/16 = 3/4