Продлим BK и BM до пересечения c AC в точках P и Q соответственно. Тогда AK - биссектриса и высота треугольника ABP, а значит ABP - равнобедренный (AB=AP) и AK - его медиана, т.е.BK=PK. Аналогично, для треугольника CBQ, CQ=BC и BM=QM, т.к. CM его высота и биссектриса. Таким образом, MK - средняя линия треугольника QBP, т.е. MK||AC, что доказывает пункт а). CP=AC-AP=AC-AB=10-8=2 AQ=AC-CQ=AC-BC=10-6=4 Значит, QP=AC-CP-AQ=10-2-4=4. Итак, если обозначить через h высоту треугольника ABC, проведенную к AC, то S(KBM)=MK*(h/2)/2=(QP/2)*h/4=QP*h/8. Т.к. ABC - прямоугольный (6^2+8^2=10^2), то h=6*8/10=4,8, т.е. S(KBM)=4*4,8/8=2,4.
Уравнение окружности в общем виде: ( х - а)^2 + (у - в)^2 = R^2, где (а,в) - координаты центра окружности, R - радиус. Если центр окружности лежит на биссектрисе, значит координаты равны у = х. Пусть у = х = t. Точка (1; 8) принадлежит окружности, значит: (1-t)^2 + (8-t)^2 = 5^2; 1 - 2t + t^2 + 64 - 16t + t^2 = 25; 2t^2 - 18t + 40 = 0; t^2 - 9t + 20 = 0; t = 4 или t = 5, уравнений, удовлетворяющих данному условию два: (х - 5)^2 + (y - 5)^2 = 5^2 или (х -4)^2 + (y - 4)^2 = 5^2
CP=AC-AP=AC-AB=10-8=2
AQ=AC-CQ=AC-BC=10-6=4
Значит, QP=AC-CP-AQ=10-2-4=4.
Итак, если обозначить через h высоту треугольника ABC, проведенную к AC, то S(KBM)=MK*(h/2)/2=(QP/2)*h/4=QP*h/8. Т.к. ABC - прямоугольный (6^2+8^2=10^2), то h=6*8/10=4,8, т.е. S(KBM)=4*4,8/8=2,4.
( х - а)^2 + (у - в)^2 = R^2,
где (а,в) - координаты центра окружности,
R - радиус.
Если центр окружности лежит на биссектрисе, значит координаты равны у = х. Пусть у = х = t.
Точка (1; 8) принадлежит окружности, значит:
(1-t)^2 + (8-t)^2 = 5^2;
1 - 2t + t^2 + 64 - 16t + t^2 = 25;
2t^2 - 18t + 40 = 0;
t^2 - 9t + 20 = 0;
t = 4 или t = 5,
уравнений, удовлетворяющих данному условию два:
(х - 5)^2 + (y - 5)^2 = 5^2 или (х -4)^2 + (y - 4)^2 = 5^2