1)Треугольник АВС, АВ=25, ВС=29, АС=36, высоты ВН, АМ, СТ, вершина угол В cosВ = (АВ в квадрате + ВС в квадрате - АС в квадрате) / 2 х АВ х ВС= = (625 +841 - 1296) / (2 х 25 х 29) =0,1172 - угол 83 =уголВ , sin 83 (В)= 0,9925 АС/sinВ = АВ/sinС, 36/0,9925=25/sinС, sinС = 0,6892 АС/sinВ = ВС/sinА, 36/0,9925=29/sinА, sinА = 0,7995 ВН = АВ х sinА = 25 х 0,7995 =20 СТ = АС х sinА = 36 х 0,7995 = 28,8 АМ = Ас х sinС = 36 х 0,6892 = 24,8 Найменьшая высота проведена на большую сторону АС
Если найдена одна высота остальные можно искать через отношение ha : hb = (1/a) : (1/b)
M=4 дм - апофема усечённой пирамиды. Пусть сторона большего основания равна а, тогда сторона меньшего а/3. Сумма площадей оснований: Sосн=а²+(а/3)²=10а²/9. Площадь боковой поверхности усеч. пирамиды: Sбок=0.5(а+а/3)·m·4=32а/3. Площадь полной поверхности усеч. пирамиды: S=(10а²/9)+(32а/3)=186 ⇒⇒ 5а²+48а-837=0 а1=-93/5 - отрицательное значение не подходит. а2=9. Рассмотрим прямоугольный тр-ник, образованный апофемой (m), высотой проведённой из вершины к основанию (h)и отрезком основания их соединяющим. Этот отрезок равен половине разности оснований пирамиды: b=(а-а/3)/2=(9-9/3)/2=3 дм. h²=m²-b²=4²-3²=7 h=√7 дм. ответ: высота усечённой пирамиды равна √7 дм.
cosВ = (АВ в квадрате + ВС в квадрате - АС в квадрате) / 2 х АВ х ВС=
= (625 +841 - 1296) / (2 х 25 х 29) =0,1172 - угол 83 =уголВ , sin 83 (В)= 0,9925
АС/sinВ = АВ/sinС, 36/0,9925=25/sinС, sinС = 0,6892
АС/sinВ = ВС/sinА, 36/0,9925=29/sinА, sinА = 0,7995
ВН = АВ х sinА = 25 х 0,7995 =20
СТ = АС х sinА = 36 х 0,7995 = 28,8
АМ = Ас х sinС = 36 х 0,6892 = 24,8
Найменьшая высота проведена на большую сторону АС
Если найдена одна высота остальные можно искать через отношение
ha : hb = (1/a) : (1/b)
Пусть сторона большего основания равна а, тогда сторона меньшего а/3.
Сумма площадей оснований: Sосн=а²+(а/3)²=10а²/9.
Площадь боковой поверхности усеч. пирамиды: Sбок=0.5(а+а/3)·m·4=32а/3.
Площадь полной поверхности усеч. пирамиды: S=(10а²/9)+(32а/3)=186 ⇒⇒
5а²+48а-837=0
а1=-93/5 - отрицательное значение не подходит.
а2=9.
Рассмотрим прямоугольный тр-ник, образованный апофемой (m), высотой проведённой из вершины к основанию (h)и отрезком основания их соединяющим. Этот отрезок равен половине разности оснований пирамиды: b=(а-а/3)/2=(9-9/3)/2=3 дм.
h²=m²-b²=4²-3²=7
h=√7 дм.
ответ: высота усечённой пирамиды равна √7 дм.