Нехай січна АВ перетинає прямі а і б так, що утворилися при цьому внутрішні накрет лежачі кути 1 і 3 рівні. тоді, як правило показано вище, кути 2 і 4 теж рівні. допустимо, що за такої умови прямі а і б перетинаються в якійсь віддаленій точці С. в результаті утворюється трикутник АВС. уявімо, що цей трикутник повернули навколо точки О - середини відрізка АВ - так, що відрізок ОА зайняв положення ОВ. тоді, оскільки кут 1 = кутку 3, а кут 2 = кутку 4, промінь АС поєднатися з променем ВК, а промінь ВС з променем АР. так як промені АС і ВС мають спільну точку С. це означає, що промені ВК і АР теж мають якусь загальну точку С 1. це означає, що через дві точки С і С1 проведені дві прямі. а цього не може бути. таким чином, якщо кут 1 = кутку 3, то прямі а і б НЕ могул перетинатися, а це значить що вони паралельні: а || б
Взаимное расположение прямой и окружности зависит от расстояния от центра до прямой: 1. Если расстояние от центра окружности до прямой больше радиуса, то прямая и окружность не имеют общих точек, т.е. не пересекаются. 2. Если расстояние от центра окружности до прямой меньше радиуса, то прямая и окружность имеют 2 общих точки, т.е. пересекаются. 3. Если расстояние от центра окружности до прямой равно радиусу, то прямая и окружность имеют 1 общую точку, т.е.прямая касается окружности.
По условию теоремы прямая проходит через конец радиуса, лежащий на окружности и перпендикулярна ему. Значит радиус и есть расстояние от центра окружности до прямой. Т.е. имеем третий случай расположения прямой и окружности: прямая является касательной.
1. Если расстояние от центра окружности до прямой больше радиуса, то прямая и окружность не имеют общих точек, т.е. не пересекаются.
2. Если расстояние от центра окружности до прямой меньше радиуса, то прямая и окружность имеют 2 общих точки, т.е. пересекаются.
3. Если расстояние от центра окружности до прямой равно радиусу, то прямая и окружность имеют 1 общую точку, т.е.прямая касается окружности.
По условию теоремы прямая проходит через конец радиуса, лежащий на окружности и перпендикулярна ему. Значит радиус и есть расстояние от центра окружности до прямой. Т.е. имеем третий случай расположения прямой и окружности: прямая является касательной.