Две прямые касаются окружности (радиусом 9см) две прямые касаются окружности (радиусом 9см)с центром О в точках и N и K и пересекаются в точке M Найдите угол между этими прямыми если ОМ= 18
Пусть х см- 1 катет, а у см- 2 катет. Тогда решим систему уравнений: 1) {х+у=11 {х^2+у^2=61 2) {х^2+2*х*у+у^2=121 {х^2+у^2=61 3) {-х^2-2*х*у-у^2=-121 {х^2+у^2=61 4) {-2*х*у=-60 {х+у=11 5) {х*у=30 {х+у=11 6) {х=11-у {(11-у)*у=30 •Рассмотрим отдельно вот это уравнение: (11-у)*у=30 -у^2+11у-30=0 D=121-4*(-1)*30=441 y1=(-11+21)/2=5 y2=(-11-21)/2=-16 Второй корень не подходит по смыслу задачи (катет не может быть отрецателен). Значит, вернёмся к системе: 7) {у=5 {х=6 Итак, катеты найдены, теперь по формуле площади прямоугольного треугольника: S=1/2*a*b, где a и b - его катеты. S=1/2*5*6=15 см^2. ответ: 15 см^2.
Тогда решим систему уравнений:
1)
{х+у=11
{х^2+у^2=61
2)
{х^2+2*х*у+у^2=121
{х^2+у^2=61
3)
{-х^2-2*х*у-у^2=-121
{х^2+у^2=61
4)
{-2*х*у=-60
{х+у=11
5)
{х*у=30
{х+у=11
6)
{х=11-у
{(11-у)*у=30
•Рассмотрим отдельно вот это уравнение:
(11-у)*у=30
-у^2+11у-30=0
D=121-4*(-1)*30=441
y1=(-11+21)/2=5
y2=(-11-21)/2=-16
Второй корень не подходит по смыслу задачи (катет не может быть отрецателен).
Значит, вернёмся к системе:
7)
{у=5
{х=6
Итак, катеты найдены, теперь по формуле площади прямоугольного треугольника:
S=1/2*a*b, где a и b - его катеты.
S=1/2*5*6=15 см^2.
ответ: 15 см^2.
Тогда ∠BEC = α/2 - угол, между касательной и хордой равен половине дуги, которую отсекает хорда. Дуга равна центральному углу, т.е α
ΔOEC - прямоугольный (ОЕ - радиус в точку касания)
∠ECO = 180° - 90° - ∠EOB = 90° - α
CK - биссектриса ⇒
∠KCE = ∠ECO / 2 = (90° - α) / 2 = 45° - α/2
∠KEM = 90° - вписанный угол опирается на половину окружности 180°
ΔKEC
∠KCE = 45° - α/2
∠KEC = ∠KEM + ∠MEC = 90° + α/2
∠EKC = 180° - (45° - α/2) - (90° + α/2) = 180° - 45° - 90° = 45°
ΔKEM
∠KEM = 90°
∠EKM = ∠EKC = 45°
∠EMK = 180° - 90° - 45° = 45°
∠EKM = ∠EMK = 45° ⇒ ΔKEM - равнобедренный