Две прямые касаются окружности (радиусом 9см) с центром o в точках n u k и пересекаются в точке м найдите угол между этими прямыми угол om=18cm заранее
Объяснение: если угол КЛМ=60°, то угол NLM=30°. Рассмотрим ∆ОLM. Он прямоугольный, где OM и OL- катеты, а LM-гипотенуза. Катет лежащий напротив угла 30° равен половине гипотенузы. Напротив него лежит катет МР=10дм, тогда гипотенуза LM=10×2=20дм. Мы нашли гипотенузу ∆OLM, и она же является стороной ромба. Теперь найдём периметр ромба. Периметр - это сумма всех его сторон, поэтому Р=20×4=80дм, а полупериметр=80÷2=40дм
Р/2=40дм
Радиус вписанной окружности в ромб=(а×sinL)/2=(20×sin60°)/2=
=20×√3/2÷2=10√3÷2=5√3дм
r=5√3дм- это я так нашла по другой формуле.
Можно найти высоту ромба, через его площадь по формуле h=S÷a, где S- площадь ромба, а "а" сторона ромба, а h - высота, проведённая к ней. высота будет в 2 раза больше радиуса: h=200√3÷20=10√3дм. Так как высота больше радиуса в 2 раза, то r=10√3÷2=5√3дм
Теперь найдём площадь вписанной окружности по формуле:
Объяснение: если угол КЛМ=60°, то угол NLM=30°. Рассмотрим ∆ОLM. Он прямоугольный, где OM и OL- катеты, а LM-гипотенуза. Катет лежащий напротив угла 30° равен половине гипотенузы. Напротив него лежит катет МР=10дм, тогда гипотенуза LM=10×2=20дм. Мы нашли гипотенузу ∆OLM, и она же является стороной ромба. Теперь найдём периметр ромба. Периметр - это сумма всех его сторон, поэтому Р=20×4=80дм, а полупериметр=80÷2=40дм
Р/2=40дм
Радиус вписанной окружности в ромб=(а×sinL)/2=(20×sin60°)/2=
=20×√3/2÷2=10√3÷2=5√3дм
r=5√3дм- это я так нашла по другой формуле.
Можно найти высоту ромба, через его площадь по формуле h=S÷a, где S- площадь ромба, а "а" сторона ромба, а h - высота, проведённая к ней. высота будет в 2 раза больше радиуса: h=200√3÷20=10√3дм. Так как высота больше радиуса в 2 раза, то r=10√3÷2=5√3дм
Теперь найдём площадь вписанной окружности по формуле:
S=πr²=3,14×(5√3)²=3,14×25×3=3,14×75=
=235,5дм²
ответ: Sвп.окр=235,5дм², р/2=40дм; r=5√3дм
Объяснение:
1. На любой прямой можно взять сколько угодно точек, принадлежащих этой прямой и не принадлежащих этой прямой.
Другая прямая, хоть параллельная, хоть перпендикулярная, ни при чём.
Смотрите рис. 1.
Точки A, B, C принадлежат прямой а.
Точки D, E, F не принадлежат прямой а.
Точка Е принадлежит параллельной прямой b.
Точка D принадлежит перпендикулярной прямой c.
Точка А принадлежит и прямой а и прямой с.
2. Два угла можно построить на одном луче, с двух разных сторон.
Смотрите рисунок 2.
Угол образец сверху. Снизу два угла, равных образцу, у луча AB.