В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Westix
Westix
16.07.2021 09:03 •  Геометрия

Две прямые касаются окружности с центром О в точках А и В и пересекаются в точке М.Найдите угол между этими прямыми,если ОМ =2R​

Показать ответ
Ответ:
БлэтНэвэльный
БлэтНэвэльный
04.03.2023 17:00

Объяснение:

а) треугольник.

а=5кл

h=5кл

S=?

Решение.

S=1/2*a*h

S=1/2*5*5=12,5 кл²

ответ: 12,5кл²

б) треугольник.

a=4кл.

h=5кл

S=?

Решение.

S=1/2*a*h=1/2*4*5=10кл².

ответ: 10кл².

в) прямоугольный треугольник.

а=3кл

b=5кл.

S=?

Решение.

Площадь прямоугольного треугольника равна половине произведения двух катетов.

S=1/2*a*b=1/2*3*5=7,5кл²

ответ: 7,5кл²

г) треугольник

а=3кл.

h=4кл.

S=?

Решение.

S=1/2*a*h=1/2*3*4=6кл².

ответ: 6кл².

д) треугольник.

S∆ABC=S(LOKC)-S∆AOB-S∆BKC-S∆ALC

S(LOKC)=LO*OK=3*5=15кл²

S∆AOB=1/2*AO*OB=1/2*2*2=2кл².

S∆BKC=1/2*BK*KC=1/2*3*3=4,5кл²

S∆ALC=1/2*AL*LC=1/2*1*5=2,5 кл²

S∆ABC=15-2-4,5-2,5=15-9=6кл²

ответ: 6кл².

е) два треугольника.

S(ABCD)=S∆ABC-S∆ADC

S∆ABC=1/2*BK*AC=1/2*7*8=28кл².

S∆ADC=1/2*DK*AC=1/2*2*8=8кл².

S(ABCD)=28-8=20кл².

ответ: 20кл².

ж)

S(ABCD)=S∆DAB+S∆DCB

S∆DAB=1/2*AO*DB=1/2*3*4=6кл².

S∆DCB=1/2*CO*DB=1/2*5*4=10кл²

S(ABCD)=6+10=16кл²

S(ABCD)=1/2*AC*DB=1/2*8*4=16кл

ответ:16кл²


Очень легко! Записать формулу, подставить значения и вычислить площадь каждой фигуры ❤️❤️❤️
0,0(0 оценок)
Ответ:
ZMYVKA
ZMYVKA
23.04.2020 07:20
В стандартной школьной евклидовой геометрии всего тринадцать аксиом. Из них девять аксиом - это аксиомы планиметрии, а ещё четыре - это аксиомы стереометрии. Вот аксиомы планиметрии: А1.Какова бы ни была прямая, существуют точки, принадлежащие этой прямой и точки не принадлежащие этой прямой. Через любые две точки можно провести прямую и только одну. А2. Из трёх точек на прямой одна о только одна лежит между двумя другими. А3 Каждый отрезок имеет определенную длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой. А4 Всякая прямая разбивает плоскость на две полуплоскости. Если две точки принадлежат одной полуплоскости, то отрезок с концами в этих точках не пересекает прямую. Если две точки принадлежат разным полуплоскостям, то отрезок с концами в этих точках пересекает прямую. А5 Каждый угол имеет определенную градусную меру, большую нуля. Градусная мера угла равна сумме градусных мер углов на которые он разбивается любым лучом, проходящим между его сторонами. Градусная мера развёрнутого угла принимается равной 180 градусам. А6 На любой полупрямой от ее начальной точки можно отложить отрезок заданной длины, и только один. А7 От любой полупрямой в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180, и только один. А8 Каков бы ни был треугольник, существует равный ему треугольник в заданном расположении относительно данной полупрямой. А9 Через точку не лежащую на данной прямой можно провести прямую на плоскости, параллельную данной прямой и притом только одну. Это знаменитый пятый постулат Евклида. На этих девяти аксиомах базируется весь курс планиметрии - геометрии на плоскости. Все теоремы доказываются на основе либо этих аксиом, либо ранее доказанных теорем. Любая теорема доказывается и любая задача решается в конечном итоге сведением к одной или нескольким аксиомам. В этом фундаментальное значение этих аксиом. Иногда к аксиомам добавляют и простые и очевидные законы логики и теории множеств. Например, если некоторая точка лежит на данном отрезке, который, в свою очередь лежит на данной прямой, то эта точка лежит на данной прямой. Если в процессе доказательства теоремы выдвигается предположение, противоположное смыслу теоремы, и из этого предположения на основе опять-таки этих аксиом получается, что некоторая точка принадлежит некоторой прямой и одновременно не принадлежит ей, то это противоречие опровергает выдвинутое предположение и теорема считается доказанной (метод от противного). К аксиомам стереометрии причисляют сформулированные девять аксиом планиметрии (с учётом того, что каждая из них верна в некоторой плоскости) и ещё добавляются четыре аксиомы: Аксиомы стереометрии В1 Какова бы ни была плоскость, существуют точки, принадлежащие этой плоскости и точки, не принадлежащие этой плоскости Через любые три точки, не лежащие на одной прямой, можно провести плоскости и притом только одну. В2 Если две точки прямой лежат в плоскости, то вся прямая лежит в этой плоскости. В3. Всякая плоскость разбивает пространство на два полупространства. Если две точки принадлежат одному полупространству, то отрезок с концами в этих точках не пересекает плоскость. Если две точки принадлежат разным полупространствам, то отрезок с концами в этих точках пересекает плоскость. Иногда эту аксиому в школьной программе не рассматривают. В4: Если две различные плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей. Как и в планиметрии, в стереометрии набор этих аксиом лежит в основе доказательства любой теоремы и решения любой задачи.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота