Две прямые касаются окружности с центром О в точках А и В и пересекаются в точке С. Найдите угол между этими прямыми, если угол ABO равен 40 градусов.(ответ запишите не используя обозначение градуса. Например: 190) * c решением дано найти
Внешний угол при вершине треугольника равен сумме внутренних углов треугольника, не смежных с ним. рассмотрим треугольник abc. угол свн - внешний угол при вершине, противоположной основанию. вм- биссектриса этого угла. она делит угол на два равных угла 1 и 2. так как внешний угол при в равен сумме внутренних углов а и с, а треугольник авс равнобедренный и углы при его основании равны между собой, все выделенные углы также равны между собой. углы под номером 1 -равные соответственные при прямых ас и вми секущей авуглы под номером 2 - равные накрестлежащие при прямых ас и вми секущей всесли при пересечении двух прямых третьей внутренние накрестлежащие углы равны, то прямые параллельны.
треугольник АВС, уголВ=105, уголС=45, уголА=180-105-45=30, против наибольшего угла лежит наибольшая сторона=АС, наименьшая высота идет к наибольшей стороне - высота ВН, треугольник ВНС прямоугольный, уголНВС=90-уголС=90-45=45, треугольник ВНС равнобедренный, СН=ВН=х, треугольник АВН прямоугольный, АН=ВН/tgA=х/(1/√3)=х√3, АС=АН+НС=х√3+х=х(√3+1), площадь=1/2*АС*ВН, 2*(√3+1)=х(√3+1), х=2=ВН
если tg не проходили тогда - треугольник АВН прямоугольный, АВ=2*ВН=2*х (ВН лежит против угла 30 =1/2 гипотенузы), АН²=АВ²-ВН²=4х²-х²=3х², АН=х√3, а далее по тексту выше
треугольник АВС, уголВ=105, уголС=45, уголА=180-105-45=30, против наибольшего угла лежит наибольшая сторона=АС, наименьшая высота идет к наибольшей стороне - высота ВН, треугольник ВНС прямоугольный, уголНВС=90-уголС=90-45=45, треугольник ВНС равнобедренный, СН=ВН=х, треугольник АВН прямоугольный, АН=ВН/tgA=х/(1/√3)=х√3, АС=АН+НС=х√3+х=х(√3+1), площадь=1/2*АС*ВН, 2*(√3+1)=х(√3+1), х=2=ВН
если tg не проходили тогда - треугольник АВН прямоугольный, АВ=2*ВН=2*х (ВН лежит против угла 30 =1/2 гипотенузы), АН²=АВ²-ВН²=4х²-х²=3х², АН=х√3, а далее по тексту выше