Высота боковой грани пирамиды равна корню квадратному из суммы квадратов высоты пирамиды и квадрата половины длины стороны основания или √((10:2)²+12²)=√√169=13 (дм) площадь каждой из боковых граней: 13*10/2=65(дм²) площадь боковой поверхности пирамиды: 130*4=260 (дм²) площадь боковой поверхности пирамиды и основания: 260+(10*10)=360 (дм²) ткани необходимо, чтобы сшить саму палатку и ее основание не считая расхода материалов на швы и обрезки.
360:2=180 (дм²)-составляют 50% от необходимого количества ткани 360+180=540 (дм²)ткани необходимо, чтобы сшить саму палатку и ее основание с учетом швов и обрезков
1) По формуле S(∆) = ½*h(a)*a, где а - какая-то сторона ∆ АВС, h(a) - высота, проведенная к этой стороне. Тогда S(∆ ABC) = ½*h(a)*a = ½*11*7 = 77/2 = 38.5 см². ответ: S(∆ ABC) = 38.5 см². 2) Найдём второй катет по теореме Пифагора. Пусть катеты равны a и b, а гипотенуза равна с, причем длины всех сторон положительны. Тогда по теореме Пифагора а² + b² = с², теперь подставим числа: 12² + b² = 13², то есть b² = 13² - 12² = (13 - 12)(13 + 12) = 1*25 = 25. Тогда b = √25 = 5, т.к. длина > 0. Значит, катеты данного прямоугольного ∆ равны 12 и 5 см. Тогда по той же формуле (т.к. катеты в прямоугольном ∆ перпендикулярны, то S(прямоугольного ∆) равна полупроизведению его катетов) S(∆) = ½*h(a)*a = ½*b*a = ½*12*5 = 6*5 = 30 см². ответ: второй катет равен 5 см, S(прямоугольного ∆) = 30 см².
√((10:2)²+12²)=√√169=13 (дм)
площадь каждой из боковых граней:
13*10/2=65(дм²)
площадь боковой поверхности пирамиды:
130*4=260 (дм²)
площадь боковой поверхности пирамиды и основания:
260+(10*10)=360 (дм²) ткани необходимо, чтобы сшить саму палатку и ее основание не считая расхода материалов на швы и обрезки.
360:2=180 (дм²)-составляют 50% от необходимого количества ткани
360+180=540 (дм²)ткани необходимо, чтобы сшить саму палатку и ее основание с учетом швов и обрезков