∪ AB = 40°; ∪ BC = 40°; ∪ CD = 120°; ∪ AD = 160°;
Объяснение:
Поскольку ∠АВС = 140° опирается на дугу ADC, то ∪ АDС = 280°
Так как около данного четырёхугольника можно описать окружность, то сумма противоположных углов четырёхугольника равна 180°, поэтому
∠ВСD + ∠BAD = 180° и ∠BCD = 180° - ∠BAD = 180° - 80° = 100°
Поскольку ∠BCD = 100° опирается на дугу ВАD, то ∪ ВАD = 200°
В Δ АВС АВ = ВС, ∠АВС = 140°, тогда ∠ВАС = ∠ВСА = 0,5(180° - 140°) = 20°
Поскольку ∠ВАС = 20° опирается на дугу ВС, то ∪ ВС = 40°
Поскольку ∠ВСА = 20° опирается на дугу АВ, то ∪ АВ = 40°
∪ AD = ∪ BAD - ∪ AB = 200° - 40° = 160°
∪ CD = ∪ ADC - ∪ AD = 280° - 160° = 120°
S = 10,08 ед.изм2
или
S = 10 8/100 ед.изм2 (десять целых восемь сотых единиц измерения в квадрате)
1). Данную трапецию разделим на 3 сегмента:
1 Прямоугольник и 2 боковых треугольника.
2). Найдем площади данных фигур: (в клетках)
а). Sпр = 6 * 7 = 42 кл2.
б). Sтр1 = 5 * 6 / 2 = 15 кл2.
в). Sтр2 = 2 * 6 / 2 = 6 кл2.
Сумма данных сегментов будет являться площадью трапеции (в клетках):
г). Sтр = 42 + 15 + 6 = 63 кл2.
Единицы измерения не указаны, возможно см2, но продолжим так, зная размер клетки, получим площадь в ед.изм.:
S = 0,4 * 0,4 * 63 = 0,16 * 63 = 10,08 ед.изм2.
S = 4/10 * 4/10 * 63 = (4 * 4)/(10 * 10) * 63 = 16/100 * 63 = (16 * 63)/(100 * 1) = 1008/100 = 10 8/100 ед.изм2 (десять целых восемь сотых единиц измерения в квадрате)
∪ AB = 40°; ∪ BC = 40°; ∪ CD = 120°; ∪ AD = 160°;
Объяснение:
Поскольку ∠АВС = 140° опирается на дугу ADC, то ∪ АDС = 280°
Так как около данного четырёхугольника можно описать окружность, то сумма противоположных углов четырёхугольника равна 180°, поэтому
∠ВСD + ∠BAD = 180° и ∠BCD = 180° - ∠BAD = 180° - 80° = 100°
Поскольку ∠BCD = 100° опирается на дугу ВАD, то ∪ ВАD = 200°
В Δ АВС АВ = ВС, ∠АВС = 140°, тогда ∠ВАС = ∠ВСА = 0,5(180° - 140°) = 20°
Поскольку ∠ВАС = 20° опирается на дугу ВС, то ∪ ВС = 40°
Поскольку ∠ВСА = 20° опирается на дугу АВ, то ∪ АВ = 40°
∪ AD = ∪ BAD - ∪ AB = 200° - 40° = 160°
∪ CD = ∪ ADC - ∪ AD = 280° - 160° = 120°
S = 10,08 ед.изм2
или
S = 10 8/100 ед.изм2 (десять целых восемь сотых единиц измерения в квадрате)
Объяснение:
1). Данную трапецию разделим на 3 сегмента:
1 Прямоугольник и 2 боковых треугольника.
2). Найдем площади данных фигур: (в клетках)
а). Sпр = 6 * 7 = 42 кл2.
б). Sтр1 = 5 * 6 / 2 = 15 кл2.
в). Sтр2 = 2 * 6 / 2 = 6 кл2.
Сумма данных сегментов будет являться площадью трапеции (в клетках):
г). Sтр = 42 + 15 + 6 = 63 кл2.
Единицы измерения не указаны, возможно см2, но продолжим так, зная размер клетки, получим площадь в ед.изм.:
S = 0,4 * 0,4 * 63 = 0,16 * 63 = 10,08 ед.изм2.
или
S = 4/10 * 4/10 * 63 = (4 * 4)/(10 * 10) * 63 = 16/100 * 63 = (16 * 63)/(100 * 1) = 1008/100 = 10 8/100 ед.изм2 (десять целых восемь сотых единиц измерения в квадрате)