Две секущие плоскости перпендикулярны к оси конуса. докажите, что площади сечений конуса этими плоскости и относятся как квадраты расстояний от вершины конуса до этих плоскостей. можно подробно, 20 , !
Сделаем рисунок по условию окружность вписана в треугольник Все стороны треугольника касаются окружности на основании Свойства касательной: Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности. пусть DB=BE = x тогда ЕС = FC = a - x AD = AF = c - x AC = AF +FC = a - x + c - x = a+c -2x (1) Но также АС =b (2) тогда b = a+c -2x 2x = a+c -b x = (a+c-b) /2 BD=BE= = ( a+c-b) /2 AD=AF= c - x = c - (a+c-b) /2 = ( - a+b+c) /2 EC=FC= a - x = a - (a+c-b) /2 = ( a+b-c) /2
Если противоположные стороны четырехугольника попарно параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Середины сторон произвольного (в том числе невыпуклого или пространственного) четырехугольника K,\;L,\;M,\;N являются вершинами параллелограмма Вариньона.
Стороны этого параллелограмма параллельны соответствующим диагоналям четырехугольника ABCD. Периметр параллелограмма Вариньона равен сумме длин диагоналей исходного четырехугольника, а площадь параллелограмма Вариньона равна половине площади исходного четырехугольника.
окружность вписана в треугольник
Все стороны треугольника касаются окружности
на основании Свойства касательной:
Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
пусть DB=BE = x
тогда
ЕС = FC = a - x
AD = AF = c - x
AC = AF +FC = a - x + c - x = a+c -2x (1)
Но также
АС =b (2)
тогда
b = a+c -2x
2x = a+c -b
x = (a+c-b) /2
BD=BE= = ( a+c-b) /2
AD=AF= c - x = c - (a+c-b) /2 = ( - a+b+c) /2
EC=FC= a - x = a - (a+c-b) /2 = ( a+b-c) /2
Объяснение:
Если противоположные стороны четырехугольника попарно параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Середины сторон произвольного (в том числе невыпуклого или пространственного) четырехугольника K,\;L,\;M,\;N являются вершинами параллелограмма Вариньона.
Стороны этого параллелограмма параллельны соответствующим диагоналям четырехугольника ABCD. Периметр параллелограмма Вариньона равен сумме длин диагоналей исходного четырехугольника, а площадь параллелограмма Вариньона равна половине площади исходного четырехугольника.