Две смежные вершины прямоугольника лежат в плоскости альфа. из каких дополнительных условий (из ниже перечисленных) служат, что и весь прямоугольник лежит в плоскости альфа?
1)точка пересечения диагоналей лежит в плоскости альфа
2)середина данной стороны лежит в плоскости альфа
3)середина противоположной стороны лежит в плоскости альфа
ответ:Номер 1
ЕК||АD при секущей FB,т к
<МFB=<АВF=56 градусов,как внутренние накрест лежащие
<С+<М=180 градусов,как односторонние при EK||AD и секущей СМ,тогда
<М=180-72=108 градусов
Номер 2
Углы при основании равнобедренного треугольника равны между собой
<1=56 градусов
<2=<3=(180-56):2=62 градуса
Номер 3
<АВЕ=<DBC=15 градусов,как вертикальные
Треугольник DBC
<D=48 градусов
<B=15 градусов
<С=180-(48+15)=180-63=117 градусов
Треугольник АСF
<F=64 градуса
<DCB+<ACF=180 градусов,как смежные
<АСF=180-117=63 градуса
<А=180-(64+63)=180-127=53 градуса
Объяснение:
Следовательно, отрезок ВМ=4.
В треугольнике АВС по теореме косинусов: "Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними"
Cosα = (b²+c²-a²)/2bc. (угол α - между b и c). В нашем случае:
CosВ=(64+49-36)/2*8*7=11/16. Формула приведения: Sin²α+Cos²α=1.
Тогда SinВ=√(1-121/16²)=√135/16.
Площадь треугольника АВМ
Sabm=(1/2)*АВ*ВМ*SinB=(1/2)8*4*√135/16=√135.
ответ: Sabm=√135.