Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности. Пусть ребро призмы равно а. Грани - квадраты, их 3. S бок=3а² S двух осн.=( 2 а²√3):4=( а²√3):2 По условию 3а²+(а²√3):2=8+16√3 Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3) а²=16(1+2√3):(6+√3) Подставим значение а² в формулу площади правильного треугольника: S=[16*(1+2√3):(6+√3)]*√3:4 S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности.
Пусть ребро призмы равно а.
Грани - квадраты, их 3.
S бок=3а²
S двух осн.=( 2 а²√3):4=( а²√3):2
По условию
3а²+(а²√3):2=8+16√3
Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3)
а²=16(1+2√3):(6+√3)
Подставим значение а² в формулу площади правильного треугольника:
S=[16*(1+2√3):(6+√3)]*√3:4
S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
ММ₁ параллельна прямым АА₁ и ВВ₁, значит тоже лежит в этой плоскости.
Плоскость АА₁В пересекает плоскость α по прямой b, значит точки А₁, В₁ и М₁ лежат на этой прямой.
Тогда плоский четырехугольник АА₁В₁В - трапеция, а ММ₁ - ее средняя линия.
ММ₁ = (АА₁ + ВВ₁) /2
1) AA₁ = 5 м, BB₁ = 7 м;
ММ₁ = (5 + 7)/2 = 6 м.
2) AA₁ = 3,6 дм, BB₁ = 4,8 дм;
ММ₁ = (3,6 + 4,8)/2 = 8,4/2 = 4,2 дм.
3) AA₁ = 8,3 см, BB₁ = 4,1 см;
ММ₁ = (8,3 + 4,1)/2 = 12,4/2 = 6,2 см.
4) AA₁ = a, BB₁= b
ММ₁ = (a + b)/2