Две стороны треугольника равны 12 см и 6 см, а косинус угла между ними равен v5/3. Найдите площадь этого треугольника.
Задание 2 ( ).
В треугольнике ABC проведена высота BD, равная 12 см. Найдите площадь треугольника ABC, если ∠ABD = 30°, ∠BCD = 45°.
Задание 3 ( ).
Три окружности попарно касаются друг друга. Радиусы окружностей равны 3 см, 8 см, 22 см. Найдите площадь треугольника, вершинами которого являются центры этих окружностей.
Задание 4 ( ).
Площадь треугольника ABC равна 48 см2. На стороне AC отметили точку N так, что AN : NC = 1 : 5. Найдите площадь треугольника NBC.
Задание 5.
В равнобедренном треугольнике ABC основание AC = 12 см. BM – медиана, равная 8 см. Найдите:
а) радиус вписанной окружности ( );
б) радиус описанной окружности ( ).
Даны точки A (– 1; 3), B (1; 5), C (3; 3), D (1; 1).
Если не известно, какая фигура заданный четырёхугольник, то проще его разделить на 2 треугольника: АВС и АСД. Найти их площади и сложить.
Вектор a (АВ) Вектор b (АС)
x y x y
2 2 4 0
4 4 16 0 Квадраты
8 16 Сумма квадратов
Модуль =√8=2√2 ≈ 2,8284 4
Скалярное произведение ABxAC = (2*4 + 2*0) = 8.
cos ВAС = 0,707106781
Угол ВAС = 0,7854 радиан
45 градусов.
Вектор e (АD)
x y
2 -2
4 4
8
2,828427125
Скалярное произведение AСxAD = 8
cos CAD= 0,707106781
Угол CAD = 0,7854 радиан
45 градусов.
S(ABCD) = (1/2)*(AB*AC*sinA+AC*AD*sinCAD)
S(ABCD) = 0,5 *(8+8) = 8.
НАСТЯ ПРИВЕТ
Объяснение:
у прямокутнику abcd на діагоналі ac вибрана така точка k для якої cb=ck на стороні bc вибрана така точка m для якої km=mc, доведіть що ak+bm+cmу прямокутнику abcd на діагоналі ac вибрана така точка k для якої cb=ck на стороні bc вибрана така точка m для якої km=mc, доведіть що ak+bm+cmу прямокутнику abcd на діагоналі ac вибрана така точка k для якої cb=ck на стороні bc вибрана така точка m для якої km=mc, доведіть що ak+bm+cmу прямокутнику abcd на діагоналі ac вибрана така точка k для якої cb=ck на стороні bc вибрана така точка m для якої km=mc, доведіть що ak+bm+cm