A1. Две прямые на плоскости называются параллельными, если они:
4) не пересекаются
А2. Один из признаков параллельности двух прямых гласит:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А3. Выберите утверждение, являющееся аксиомой параллельных прямых:
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной
А4. Если две параллельные прямые пересечены секущей, то:
Соответственные углы равны
А5. Если прямая перпендикулярна одной из двух параллельных прямых, то:
Она перпендикулярна и другой
А6. Всякая теорема состоит из нескольких частей:
Условия и заключения
А7. При пересечении двух прямых секущей образуются углы, имеющие специальные названия:
Накрест лежащие, соответственные, односторонние
А8. Аксиома – это:
Положение геометрии, не требующее доказательства
А9. Выберите утверждение, которое является признаком параллельности прямых:
А10. Если прямая не пересекает одну из двух параллельных прямых, то:
Другую прямую она тоже не пересекает
или
С другой прямой она совпадает
ответ: 552 см²
Объяснение: Назовём трапецию АВСD, ВС||AD; АВ перпендикулярна основаниям.
AB:CD=4:5;
AD-BC=18 см
BD=40 см
————————
Примем коэффициент отношения боковых сторон равным х. Тогда АВ=4х, СD=5х.
Трапеция прямоугольная, поэтому высота СН параллельна и равна АВ.
Из ∆ СНD по т.Пифагора CH²+HD²=СD²⇒
HD²=25x²-16x²=9x²⇒
HD=3x.
АВСН - прямоугольник, АН=ВС. Так как АD-BC=18 см, то НD=18 см, т.е. 3х=18, х=6 см.
АВ=4х=24 см
По т.Пифагора из ∆ АВD
АD²=BD²-AB²
AD=√(1600-576)=32 ⇒
BC=32-18=14 см
Площадь трапеции равна произведению полусуммы оснований на высоту.
S(ABCD)=0,5•(BC+AD)•CH
S(ABCD)=552 см²
A1. Две прямые на плоскости называются параллельными, если они:
4) не пересекаются
А2. Один из признаков параллельности двух прямых гласит:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А3. Выберите утверждение, являющееся аксиомой параллельных прямых:
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной
А4. Если две параллельные прямые пересечены секущей, то:
Соответственные углы равны
А5. Если прямая перпендикулярна одной из двух параллельных прямых, то:
Она перпендикулярна и другой
А6. Всякая теорема состоит из нескольких частей:
Условия и заключения
А7. При пересечении двух прямых секущей образуются углы, имеющие специальные названия:
Накрест лежащие, соответственные, односторонние
А8. Аксиома – это:
Положение геометрии, не требующее доказательства
А9. Выберите утверждение, которое является признаком параллельности прямых:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А10. Если прямая не пересекает одну из двух параллельных прямых, то:
Другую прямую она тоже не пересекает
или
С другой прямой она совпадает
ответ: 552 см²
Объяснение: Назовём трапецию АВСD, ВС||AD; АВ перпендикулярна основаниям.
AB:CD=4:5;
AD-BC=18 см
BD=40 см
————————
Примем коэффициент отношения боковых сторон равным х. Тогда АВ=4х, СD=5х.
Трапеция прямоугольная, поэтому высота СН параллельна и равна АВ.
Из ∆ СНD по т.Пифагора CH²+HD²=СD²⇒
HD²=25x²-16x²=9x²⇒
HD=3x.
АВСН - прямоугольник, АН=ВС. Так как АD-BC=18 см, то НD=18 см, т.е. 3х=18, х=6 см.
АВ=4х=24 см
По т.Пифагора из ∆ АВD
АD²=BD²-AB²
AD=√(1600-576)=32 ⇒
BC=32-18=14 см
Площадь трапеции равна произведению полусуммы оснований на высоту.
S(ABCD)=0,5•(BC+AD)•CH
S(ABCD)=552 см²