Разбиваем многоугольник на треугольники, проводим линии АС и АД, треугольник АВС прямоугольный уголВ=90, равнобедренный, АВ=ВС=2, уголВАС=уголАСВ=90/2=45, площадь АВС=1/2*АВ*ВС=1/2*2*2=2, АС=корень(АВ в квадрате+ВС в квадрате)=корень(4+4)=2*корень2, треугольник АДЕ равнобедренный, АЕ=ДЕ=2, уголЕ=120, уголДАЕ=уголАДЕ=(180-120)/2=30, площадь АДЕ=1/2*АЕ*ДЕ*sin120=1/2*2*2*корень3/2=корень3, АД в квадрате=АЕ в квадрате+ДЕ в квадрате-2*АЕ*ДЕ*cos120=4+4-2*2*2*(-1/2)=12, АД=2*корень3, уголСАД=уголА-уголВАС-уголДАЕ=90-45-30=15, площадь САД=1/2*АС*АД*sin15=1/2*2*корень2*2*корень3*sin15, sin15=sin(45-30)=sin45*cos30-cos45*sin30=(корень2/2*корень3/2) - (корень2/2*1/2)=корень2/4 *(корень3 -1), площадь САД=1/2*2*корень2*2*корень3 *(корень2/4 *(корень3 -1))=корень3*(корень3-1)=3-корень3, площадь АВСДЕ=площадь АВС+площадьАДЕ+площадьСАД=2+корень3+3-корень3=5
Опустим из вершины В высоту трапеции ВН. Высота равнобедренной трапеции делит основание на отрезки, меньший из которых равен полуразности, а больший - полусумме оснований. АН=(10-2):2=4 см Из треугольника АВН по т. Пифагора ВН=3 см.
Противоположные стороны трапеции параллельны. Биссектриса угла ВАD при них – секущая. ∠ВЕА=∠ЕАD – накрестлежащие. Но ∠ВАЕ=∠ЕАD, т.к. АЕ - биссектриса. ⇒ ∆ АВЕ - равнобедренный (т.к.углы при основании АЕ равны). АВ=ВЕ=5 см.
Проведем из Е параллельно АВ прямую до пересечения с АD в точке М. В параллелограмме АВЕМ противоположные стороны параллельны и равны, значит, ЕМ=АВ=ВЕ=АМ=5, ⇒ АВЕМ - ромб.
Высота трапеции ВН - высота ромба. Площадь ромба равна произведению высоты на сторону, к которой проведена. Ѕ(АВЕМ)=ВН•АМ=3•5=15 см²
Биссектриса угла АВЕ – меньшая диагональ ромба ВМ и образует с высотой ромба и частью его стороны прямоугольный треугольник ВНМ, в котором ВН и МН - катеты. ВН=3 см, МН=АМ-АН=1см По т.Пифагора ВМ=√(BH²+HM²)=√(9+1)=√10. Биссектриса ВО угла АВЕ в ∆ АВЕ равна половине ВМ. ВО=(√10)/2; BO²=10/4=2,5 см²
Опустим из вершины В высоту трапеции ВН. Высота равнобедренной трапеции делит основание на отрезки, меньший из которых равен полуразности, а больший - полусумме оснований. АН=(10-2):2=4 см Из треугольника АВН по т. Пифагора ВН=3 см.
Противоположные стороны трапеции параллельны. Биссектриса угла ВАD при них – секущая. ∠ВЕА=∠ЕАD – накрестлежащие. Но ∠ВАЕ=∠ЕАD, т.к. АЕ - биссектриса. ⇒ ∆ АВЕ - равнобедренный (т.к.углы при основании АЕ равны). АВ=ВЕ=5 см.
Проведем из Е параллельно АВ прямую до пересечения с АD в точке М. В параллелограмме АВЕМ противоположные стороны параллельны и равны, значит, ЕМ=АВ=ВЕ=АМ=5, ⇒ АВЕМ - ромб.
Высота трапеции ВН - высота ромба. Площадь ромба равна произведению высоты на сторону, к которой проведена. Ѕ(АВЕМ)=ВН•АМ=3•5=15 см²
Биссектриса угла АВЕ – меньшая диагональ ромба ВМ и образует с высотой ромба и частью его стороны прямоугольный треугольник ВНМ, в котором ВН и МН - катеты. ВН=3 см, МН=АМ-АН=1см По т.Пифагора ВМ=√(BH²+HM²)=√(9+1)=√10. Биссектриса ВО угла АВЕ в ∆ АВЕ равна половине ВМ. ВО=(√10)/2; BO²=10/4=2,5 см²