Итак, чертеж к задаче прикреплен снизу. Так как треугольник является прямоугольным, то в нем действует теорема Пифагора: квадрат гипотенузы равен сумме квадратов двух катетов прямоугольного треугольника. В алгебраической форме эту теорему записывают так:
c^2 = a^2 + b^2 (^2 - вторая степень числа)
Из этой формулы выразим a^2, т.к. именно катет a нужно найти(см. чертеж внизу)
a^2 = c^2 - b^2
Но мы то выразили только КВАДРАТ стороны, а не саму сторону. То есть, чтобы найти саму сторону, нам нужно извлечь корень квадратный из выражения c^2 - b^2
В итоге, вычислив значение а(см. картинку внизу), мы получаем ответ
Сделаем рисунок к задаче, стараясь придерживаться заданных в ней пропорций. Обозначим середины АВ и ВС как Н и Р соответственно. Проведем отрезок НР - среднюю линию треугольника АВС. Обозначим точку К - середину АМ. Соединим середины АВ и АМ отрезком НК. НК параллельна ВМ как средняя линия треугольника АВМ и, соответственно, равна половине медианы ВМ. Рассмотрим треугольник АКО. В нем АО перпендикулярна КН, т.к. АЕ - расстояние от А до ВМ определяется отрезком, перпендикулярным ВМ. Поскольку КН параллельна ВМ, то АО перпендикулярна КН. Из треугольника АОК, в котором АО=половине АЕ, а АК - половине АМ, по теореме Пифагора найдем ОК. ОК=√(2,5²-2²)=1,5 см КН=2 ОК=3 см ВМ=2КН=6 см
Объяснение:
Итак, чертеж к задаче прикреплен снизу. Так как треугольник является прямоугольным, то в нем действует теорема Пифагора: квадрат гипотенузы равен сумме квадратов двух катетов прямоугольного треугольника. В алгебраической форме эту теорему записывают так:
c^2 = a^2 + b^2 (^2 - вторая степень числа)
Из этой формулы выразим a^2, т.к. именно катет a нужно найти(см. чертеж внизу)
a^2 = c^2 - b^2
Но мы то выразили только КВАДРАТ стороны, а не саму сторону. То есть, чтобы найти саму сторону, нам нужно извлечь корень квадратный из выражения c^2 - b^2
В итоге, вычислив значение а(см. картинку внизу), мы получаем ответ
Сделаем рисунок к задаче, стараясь придерживаться заданных в ней пропорций.
Обозначим середины АВ и ВС как Н и Р соответственно. Проведем отрезок НР - среднюю линию треугольника АВС.
Обозначим точку К - середину АМ.
Соединим середины АВ и АМ отрезком НК.
НК параллельна ВМ как средняя линия треугольника АВМ и, соответственно, равна половине медианы ВМ.
Рассмотрим треугольник АКО. В нем АО перпендикулярна КН, т.к. АЕ - расстояние от А до ВМ определяется отрезком, перпендикулярным ВМ.
Поскольку КН параллельна ВМ, то АО перпендикулярна КН.
Из треугольника АОК, в котором АО=половине АЕ, а АК - половине АМ,
по теореме Пифагора найдем ОК.
ОК=√(2,5²-2²)=1,5 см
КН=2 ОК=3 см
ВМ=2КН=6 см