Треугольник ABC; AB=9; BC=11; BO=7. АО=ОС(медиана делит основание на 2 равные части). Чтобы найти основание, мы продолжаем медиану на 7 см и ставим точку Д(ВО=ОД=7см); соединяем со всеми вершинами и получаем ромб/параллелограм. Параллелограм состоит из 4-её треугольников, попарно одинаковых; /\АВО=/\СОД(АО=ОС, ВО=ОД и вертикальные углы при точке О); ВД=7+7=14см Воспользуемся формулой Герона: S=\/p(p-a)(p-b)(p-c), где p=(a+b+c):2 Треугольник ВСД: P=(11+9+14):2=17см S=\/17*8**6*3= \/17*4*2*3*2*3=12\/17cm^2
Основание пирамиды-прямоугольник с углом между диагоналями 120° градусов. Все боковые ребра пирамиды равны 3√2 см и наклонены к плоскости основания под углом 45°. Найдите объем пирамиды.
Боковые ребра пирамиды равны и наклонены к плоскости основания под углом 45°, следовательно, проекции ребер на плоскость основания также равны между собой и равны половинам диагоналей основания, а треугольник, образованный высотой SO пирамиды, половиной OC диагонали и боковым ребром SC - прямоугольный равнобедренный. Отсюда высота SO пирамиды также равна половине диагонали. По т. Пифагора или формулы равнобедренного прямоугольного треугольника с=a√2 высота SO пирамиды и половина диагонали основания равны 3 см. Основание пирамиды - прямоугольник с углом между диагоналями 120° градусов, значит, второй угол между ними 60°. Меньшая сторона прямоугольника образует с половинами диагоналей равносторонний треугольник, ⇒ меньшая сторона основания также равна 3 см Диагональ основания равна 3*2=6 см Большая сторона основания - катет, противолежащий углу 60° и равна 6*sin(60°)= 3√3 см Объем пирамиды равен произведению площади основания на высоту, деленную на 3: V=Sh:3 V=3*(3√3)*3:3=9√3 см³
Боковые ребра пирамиды равны и наклонены к плоскости основания под углом 45°, следовательно,
проекции ребер на плоскость основания также равны между собой и равны половинам диагоналей основания,
а треугольник, образованный высотой SO пирамиды, половиной OC диагонали и боковым ребром SC - прямоугольный равнобедренный.
Отсюда высота SO пирамиды также равна половине диагонали.
По т. Пифагора или формулы равнобедренного прямоугольного треугольника с=a√2 высота SO пирамиды и половина диагонали основания равны 3 см.
Основание пирамиды - прямоугольник с углом между диагоналями 120° градусов, значит, второй угол между ними 60°.
Меньшая сторона прямоугольника образует с половинами диагоналей равносторонний треугольник, ⇒ меньшая сторона основания также равна 3 см
Диагональ основания равна 3*2=6 см
Большая сторона основания - катет, противолежащий углу 60° и равна 6*sin(60°)= 3√3 см
Объем пирамиды равен произведению площади основания на высоту, деленную на 3:
V=Sh:3
V=3*(3√3)*3:3=9√3 см³