Точка, назовём её С(х;у;z) равноудалена от точек А(1,2,3) и В(-3,3,2).
Это означает, что расстояние АС равно расстоянию ВС.
Точка С принадлежит оси ОХ, значит её координаты равны (х;0;0)
Расстояние между точками можно определить по формуле:
sqr((x2-x1)^2+(y2-y1)^2+(z1-z2)^2), значит
sqr((х-1)^2+(0-2)^2+(0-3)^2)=sqr((x+3)^2+(0-3)^2+(0-2)^2)
(x-1)^2+4+9=(x+3)^2+9+4
(x-1)^2=(x+3)^2
x^2-2x+1=x^2+6x+9
-8x=8
x=-1
Итак, искомая точка, равноудалённая от А и В имеет координаты
С(-1;0;0)
ответ: сторона ромба равна 37 дециметров.
Объяснение:
1. Вершины ромба - А, В, С, Д. АС = 70 дециметров. ВД = 24 дециметра. Е - точка пересечения
диагоналей.
2. ∠АЕД = 90°, так как диагональ АС перпендикулярна диагонали ВД.
3. Диагонали ромба при пересечении разделяются на равные отрезки:
АЕ = 1/2 АС = 70 : 2 = 35 дециметров.
ДЕ = 1/2 ВД = 24 : 2 = 12 дециметров.
4. АД = √АЕ² + ДЕ² (по теореме Пифагора).
АД = √35² + 12² = √1225 + 144 = √1369 = 37 дециметров.
Точка, назовём её С(х;у;z) равноудалена от точек А(1,2,3) и В(-3,3,2).
Это означает, что расстояние АС равно расстоянию ВС.
Точка С принадлежит оси ОХ, значит её координаты равны (х;0;0)
Расстояние между точками можно определить по формуле:
sqr((x2-x1)^2+(y2-y1)^2+(z1-z2)^2), значит
sqr((х-1)^2+(0-2)^2+(0-3)^2)=sqr((x+3)^2+(0-3)^2+(0-2)^2)
(x-1)^2+4+9=(x+3)^2+9+4
(x-1)^2=(x+3)^2
x^2-2x+1=x^2+6x+9
-8x=8
x=-1
Итак, искомая точка, равноудалённая от А и В имеет координаты
С(-1;0;0)
ответ: сторона ромба равна 37 дециметров.
Объяснение:
1. Вершины ромба - А, В, С, Д. АС = 70 дециметров. ВД = 24 дециметра. Е - точка пересечения
диагоналей.
2. ∠АЕД = 90°, так как диагональ АС перпендикулярна диагонали ВД.
3. Диагонали ромба при пересечении разделяются на равные отрезки:
АЕ = 1/2 АС = 70 : 2 = 35 дециметров.
ДЕ = 1/2 ВД = 24 : 2 = 12 дециметров.
4. АД = √АЕ² + ДЕ² (по теореме Пифагора).
АД = √35² + 12² = √1225 + 144 = √1369 = 37 дециметров.
ответ: сторона ромба равна 37 дециметров.