Екіжақты бұрыш 45°-қа тең.оның бір жағында жатқан d нүктесі қырынан 12 см қашықтықта орналасқан.d нүктесінен екінші жағына дейінгі қашықтықты анықтаңдар.
Если сторон и два прилежащих к ней угла одного треугольника соответственно равны двум углам прилежащих к ней другого треугольника, то такие треугольники равны
Если сторон и два прилежащих к ней угла одного треугольника соответственно равны двум углам прилежащих к ней другого треугольника, то такие треугольники равны
Объяснение:
Дано: треугольник АВС и А1В1С1. АС=А1С14 угол А= углу А1; угол С= углу С1.
Доказать: что треугольники равны
Док-во:
1.Наложим треугольник А1В1С1 на треугольники АВС, так чтобы АС совпало с А1С1
2. Т.к угол А= углу А1, луч А1В1 сонаправлен с лучом АВ
угол с= углу С1, луч С1В1 сонаправлен с лучом СВ
Из этого всего следует, что точки в и В1 совпадут.
3. Треугольник АВС и треугольник А1В1С1 совпали => треуг. АВС= треуг. А1В1С1
1) Если BD — медиана и высота, то AD = DC, ∠ADB = ∠CDB = 90°, BD — общая. ΔABD = ΔCBD по двум катетам.
Откуда АВ = ВС, таким образом, ΔАВС — равнобедренный.
2) Если BD — высота и биссектриса, то ∠ABD = ∠DBC, ∠ADB = ∠BDC, BD — общая. ΔABD = ΔCBD по 2 катету и двум прилежащим углам.
Откуда АВ = ВС, таким образом, ΔАВС — равнобедренный.
3) Если BD — биссектриса и медиана: Продлим BD до точки В1, так, что BD = DB1. В ΔABD и ΔСDB1:
AD = DC (т.к. ВD — медиана) BD = DB1
∠ADB = ∠CDB1 (из построения, как вертикальные).
Таким образом, ΔABD = ΔCDB1 по 1-му признаку равенства треугольников.
Откуда ∠ABD = ∠CB1D, АВ = В1С. Аналогично ΔADB1 = ΔBDC. ∠AB1D = ∠DBC, AB1 = BC.
Т.к. ∠ABD = ∠DBC (т.к. BD — биссектриса), то ∠ABD = ∠DBC = ∠AB1D.
ΔВВ1А — равнобедренный, т.к. ∠ABD = ∠AB1D,