1) a*h 2)площадь трапеции=(а+в)*H/2, в равнобедренной трапеции углы при основании равны 3)Дан прямоугольный треугольник АВС,где АВ и АС-катеты, ВС-гипотенуза,AH-высота,а АА1-медиана. S=1/2BC*AH 1/2ВС=АА1,следовательно,S=AA1*BH=24*25=600cм2. 4) угол DAK = AKB как углы, образованные сечением прямой двух параллельных прямых. т.к АК - биссектрисса BAD, то BAK = AKB и треугольник BAK - равносторонний. в случае, если АК и DM пересекаются (рисунок) BC = 3/2 * BK = 3/2 * 20 = 30. Периметр равен 100 см В случае, если AK и DM не пересекаются (рисунок делаем самостоятельно) BC = 3 BK = 60. Периметр равен 160 см
2)площадь трапеции=(а+в)*H/2, в равнобедренной трапеции углы при основании равны
3)Дан прямоугольный треугольник АВС,где АВ и АС-катеты, ВС-гипотенуза,AH-высота,а АА1-медиана. S=1/2BC*AH 1/2ВС=АА1,следовательно,S=AA1*BH=24*25=600cм2.
4)
угол DAK = AKB как углы, образованные сечением прямой двух параллельных прямых. т.к АК - биссектрисса BAD, то BAK = AKB и треугольник BAK - равносторонний. в случае, если АК и DM пересекаются (рисунок) BC = 3/2 * BK = 3/2 * 20 = 30. Периметр равен 100 см В случае, если AK и DM не пересекаются (рисунок делаем самостоятельно) BC = 3 BK = 60. Периметр равен 160 см
Объяснение:
3)
Сумма углов в треугольнике равна 180°
∠ВАС=180°-∠АВС-∠АСВ=180°-100°-50°=30°
S∆ABC=1/2*AB*AC*sin30°=1/2*8*14*1/2=
=28ед²
ответ: 28 ед²
4)
∆АКВ- прямоугольный, равнобедренный
(∠ВКА=90°; ∠ВАК=∠АВК=45°).
АК=КВ=5 ед.
Так как трапеция равнобокая, по условию, то АК=МD=5ед.
КМ=КD-MD=8-5=3ед
КМ=ВС;
AD=KD+AK=8+5=13ед.
S=BK*(BC+AD)/2=5*(3+13)/2=5*16/2=40ед²
ответ: 40ед²
5)
∆АВС-прямоугольный.
ВС- гипотенуза
АВ и ВС - катеты
По теореме Пифагора найдем
АВ²=ВС²-АС²=13²-5²=169-25=144
АВ=√144=12 ед.
Площадь прямоугольного треугольника равна половине произведения двух катетов
S=1/2*AB*AC=12*5/2=30 ед²
ответ: 30ед²