Экзаменационные билеты по . 7-й класс билет 1 1. определение равнобедренного треугольника. свойство углов при основании равнобедренного треугольника. 2. определение биссектрисы угла. построение биссектрисы угла. 3. найдите величины смежных углов, если один из них в 5 раз больше другого. билет 2 1. определение смежных углов. свойство смежных углов. 2. определение треугольника. построение треугольника по трем сторонам. 3. отрезки mn и dk пересекаются в их общей середине в. докажите равенство треугольников mdb и nkb. билет 3 1. определение вертикальных углов. свойство вертикальных углов. 2. определение перпендикулярных прямых. построение прямой, проходящей через точку, не лежащую на данной прямой и перпендикулярную к данной прямой. 3. найдите периметр равнобедренного треугольника adc с основанием ad, если ad = 7 см, dc = 8 см. билет 4 1. определение равных треугольников. признаки равенства треугольников (доказательство одного из признаков по выбору учащегося). 2. определение отрезка. деление отрезка пополам. 3. найдите неразвернутые углы, образованные при пересечении двух прямых, если сумма двух из них равна 126° . билет 5 1. определение медианы треугольника. свойство медианы равнобедренного треугольника. 2. определение угла. построение угла, равного данному. 3. точки м, nil r лежат на одной прямой, mn = 11 см, rn = 20 см. найдите расстояние mr. билет 6 1. определение параллельных прямых. признаки параллельности прямых (доказательство одного из признаков по выбору учащегося). 2. определение треугольника. построение треугольника по стороне и двум углам. 3. угол, противолежащий основанию равнобедренного треугольника, равен 50° . найдите величину внешнего угла при основании. \ 1. аксиома параллельных. теоремы об углах, образованных двумя параллельными прямыми и секущей. (доказательство одной из теорем по выбору учащегося.) 2. определение треугольника. построение треугольника по двум сторонам и углу между ними. 3. найдите углы треугольника, на которые высота разбивает равносторонний треугольник. билет 8 1. определение треугольника. теорема о сумме углов треугольника. 2. построение равнобедренного треугольника по боковой стороне и высоте, проведенной к основанию. 3. найдите все углы, образованные при пересечении двух параллельных прямых секущей, если один из них равен 42° . билет 9 1. определение внешнего угла. свойство внешнего угла. 2. определение медианы треугольника. построение медианы треугольника. 3. найдите все углы, образованные при пересечении двух параллельных прямых секущей, если один из них 126° . билет 10 1. определение прямоугольного треугольника. свойство катета, лежащего напротив угла в 30°. 2. определение высоты треугольника. построение высоты. 3. найдите смежные углы, если один из них на 55° больше другого. билет 11 1. соотношение между сторонами и углами в треугольнике. 2. построение прямой, проходящей через данную точку и параллельную данной прямой. 3. луч sr является биссектрисой угла s, а отрезки sm и sn равны. докажите равенство треугольников smo и sno. м n r билет 12 1. равнобедренный треугольник. признак равнобедренного треугольника. 2. определение перпендикулярных прямых. построение прямой, проходящей через точку, лежащую на данной прямой, перпендикулярно к данной прямой. 3. найдите длину отрезка am и градусную меру угла авк, если вм-медиана, а вк -биссектриса треугольника abc и известно, что ас -\1 см, угол abc равен 84° .
AK=AN , BM=BP , AB=5 .
Продолжим отрезок АВ до пересечения его со сторонами трапеции
КР и NM . Получим отрезок СД.
Так как средняя линия трапеции проходит и через середины диагоналей трапеции, то отрезок АВ лежит на средней линии, которой будет отрезок СД и тогда АВ║КМ.
Точка Д - середина NM, т.к. она лежит на продолжении АВ и
тогда АД║КМ.
По теореме Фалеса стороны ∠KNM пересечены параллельными отрезками АД и КМ ⇒ точка Д - середина NM, раз точка А - середина KN. Аналогично, точка С - середина КР .
ΔKNM: BД - средняя линия ΔKNM ,BД║КМ, ВД=1/2*КМ=1/2*16=8.
ΔKPM: CB - средняя линия ΔKPM , CB║KM , CB=1/2*КМ=1/2*16=8.
СА=СВ-АВ=8-5=3
ВД=ВД-АВ=8-5=3
СД=СА+АВ+ВД=3+5+3=11
Средняя линия СД=(КМ+PN)/2=(16+PN)/2=11 ,
16+PN=2*11
16+PN=22
PN=6
Если знать свойство: длина отрезка, соединяющего середины диагоналей трапеции, равна полуразности ее оснований, то можно решить быстрее.
АB=(КМ-PN)/2 , 5=(16-PN)/2 , 16-PN=10 , PN=6 .
а- сторона квадрата =Р/4=48/4=12 см
d-диагональ квадрата
r -описанной окружности равен половине диагонали квадрата
d²=(a²+a²)=(144+144)=288
d=12√2, тогда r=12√2/2=6√2
Около правильного шестиугольника можно описать окружность: ее радиус равен его стороне, значит сторона шестиугольника =6√2
2) S=45π площадь кольца, R-внешний радиус, r-внутренний радиус
r-3 м внутренний радиус (если бы был внешний ,то общая площадь окружности была бы 9π, что не соответствует условию задачи)
S(площадь кольца)=π(R²-r²)
π(R²-r²)=45π
R²-9=45
R=√54=3√6 м
3) длина дуги 4π , соответствует углу 180 градусов, значит полная длина окружности L=360/180*4π=8π
L/2r=π
r=L/2π=8π/2π=4