РЕШЕНИЕ АВС – равносторонний треугольник →все стороны и углы равны (углы по 60 градусов), медиана является высотой и биссектрисой →А D перпендикуляр к ВС, АD делит сторону ВС пополам.
∆ АDВ – прямоугольный АВ = 12 см, DВ = 6 см По теореме Пифагора : АD˄2 = АВ˄2 - DВ˄2 АD˄2=12˄2-6˄2 АD˄2=108 АD=6√3 см Можно по формуле для равностороннего ∆ АВС : L= АD=(a*√3)/2, где a сторона равностороннего ∆ АВС АD=(12*√3)/2 = 6√3 см
∆ АDС – прямоугольный H = DM = (a*b)/c, где a=АD, b=DС, с=АС H = DM = (АD * DС)/ АС =( 6√3*6)/12 = 3√3 см
Пусть M - точка пересечения BE и AD. В треугольнике BAD биссектриса перпендикулярна стороне, то есть AB = BD; (и между прочим, AM = MD), поскольку D - середина BC, то BC = 2*AB; отсюда по свойству биссектрисы AE/EC = AB/BC = 1/2; то есть EC = 2*AE; Дальше можно действовать двумя Если известны теоремы Чевы и Ван-Обеля, то быстро находится BM/ME = 3; второй это показать - надо провести через точку E прямую II BC, до пересечения с AD в точке K; Ясно, что AK/KD = AE/EC = 1/2; откуда KM = AD/2 - AD/3 = AD/6, и KM/MD = 1/3; из подобия треугольников KME и BMD следует BM = 3*ME; Теперь есть все, чтобы найти стороны. AM = 84; BM = 126; ME = 42; из прямоугольного треугольника AMB легко находится AB = 42√13; из AME => AE = 42√5; BC = 2*AB = 84√13; AC = 3*AE = 126√5;
АВС – равносторонний треугольник →все стороны и углы равны (углы по 60 градусов), медиана является высотой и биссектрисой →А D перпендикуляр к ВС, АD делит сторону ВС пополам.
∆ АDВ – прямоугольный
АВ = 12 см, DВ = 6 см
По теореме Пифагора : АD˄2 = АВ˄2 - DВ˄2
АD˄2=12˄2-6˄2
АD˄2=108
АD=6√3 см
Можно по формуле для равностороннего ∆ АВС : L= АD=(a*√3)/2, где a сторона равностороннего ∆ АВС
АD=(12*√3)/2 = 6√3 см
∆ АDС – прямоугольный
H = DM = (a*b)/c, где a=АD, b=DС, с=АС
H = DM = (АD * DС)/ АС =( 6√3*6)/12 = 3√3 см
∆ АDМ – прямоугольный
По теореме Пифагора : АМ˄2 = АD˄2 - DМ˄2
АМ˄2 = (6√3)˄2 – (3√3)˄2
АМ˄2 = 81
АМ = 9 см
ОТВЕТ: АМ=9 см.
В треугольнике BAD биссектриса перпендикулярна стороне, то есть AB = BD; (и между прочим, AM = MD), поскольку D - середина BC, то BC = 2*AB; отсюда по свойству биссектрисы AE/EC = AB/BC = 1/2; то есть EC = 2*AE;
Дальше можно действовать двумя Если известны теоремы Чевы и Ван-Обеля, то быстро находится BM/ME = 3; второй это показать - надо провести через точку E прямую II BC, до пересечения с AD в точке K;
Ясно, что AK/KD = AE/EC = 1/2; откуда KM = AD/2 - AD/3 = AD/6, и KM/MD = 1/3; из подобия треугольников KME и BMD следует BM = 3*ME;
Теперь есть все, чтобы найти стороны. AM = 84; BM = 126; ME = 42;
из прямоугольного треугольника AMB легко находится AB = 42√13;
из AME => AE = 42√5;
BC = 2*AB = 84√13;
AC = 3*AE = 126√5;