Обозначим точку пересечения высот обеих плоскостей и АВ через О; Найдем ДО -высоту равнобедренного треугольника она будет высотой медианой в равнобедренном треугольнике , так же как и ОС будет высотой медианой в равностороннем треугольнике.ДА^2-АО^2=2^2+(\/3)^2=1;Откуда ДО=1; Ищем СО^2: АС^2-АО^2=12-3=9; Откуда СО=3; Итак имеем 3стороны треугольника: с величинами :1;3; и \/7; По ТЕЛРЕМЕ косинусов найдем угол ДОС; ДС^2=ДО^2+ОС^2-2ДО*ОС*cosДОС; Подставим и получим числовой результат: 7=1+9-6*cosДОС; 6cosДОС=3; Cos ДОС=1/2; Откуда угол ДОС равен 60* ; ответ угол наклона ДОС равен 60*;
Второй Пусть угол между сторонами BC = a и AB = 2a треугольника ABC равен 60o. Опустим перпендикуляр AC1 из вершины A на прямую BC. Из прямоугольного треугольника ABC1 с углом 30o при вершине A находим, что
Объяснение:
Решение
Первый Пусть указанные стороны равны a и 2a. Тогда по теореме косинусов квадрат третьей стороны равен
a2 + 4a2 - 2a . 2a . $\displaystyle {\textstyle\frac{1}{2}}$ = 3a2.
Пусть $ \alpha$ — угол данного треугольника, лежащий против стороны, равной 2a. Тогда по теореме косинусов
cos$\displaystyle \alpha$ = $\displaystyle {\frac{a^{2} + 3a^{2} - 4a^{2}}{2a\cdot a\sqrt{3}}}$ = 0.
Следовательно, $ \alpha$ = 90o.
Второй Пусть угол между сторонами BC = a и AB = 2a треугольника ABC равен 60o. Опустим перпендикуляр AC1 из вершины A на прямую BC. Из прямоугольного треугольника ABC1 с углом 30o при вершине A находим, что
BC1 = $\displaystyle {\textstyle\frac{1}{2}}$AB = BC.
Значит, точка C1 совпадает с точкой C. Следовательно, $ \angle$ACB = 90o.