1. Вторая сторона равна десяти. В равнобедренном треугольнике высота является и биссектрисой и медианой. В нашем случае медианой. Значит, находим второй катет по теореме Пифагора. 100-64=36. Катет равен 6. Всё основание равно 12. Площадь равна половине произведения стороны на высоту, проведённую к этой стороне. То есть S=1\2*12*8=48. 3. Значит, катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы. То есть 6:2=3. Находим высоту по теореме Пифагора. 36-9=25. Высота равна 5. Большее основание равно 16, так как трапеция равнобедренная. Площадь равна произведению полусуммы оснований на высоту 1\2(10+16)*5= 65.
2. Рассмотрим прямоугольный треугольник ACD, по теореме об угле в 30° (угол, противолежащий углу в 30° равен половине гипотенузы) CD = AC/2 = 12/2 = 6см;
1. По условию фигура ABCD - прямоугольник, но так как дано, что BC = AB следует, что ABCD - квадрат;
2. P=28см, периметр квадрата равняется сумме всех его сторон, то есть P(ABCD) = 4AB (так как все 4 стороны равны), то есть 28 = 4AB, следовательно AB = 7см. Так как ABCD - квадрат и все его стороны равны: AB = BC = CD = AD = 7 см;
3. S(ABCD) = AB в квадрате = 49 сантиметров квадратных;
ответ: S(ABCD) = 49 сантиметров квадратных.
•Задание 8
1. Исходя из данных выражений составим систему:
AB = 3BC AB-BC = 12
Подставим значение AB из первого выражения:
3BC - BC = 12 2BC = 12 BC = 6см, тогда AB=3BC = 18 сантиметрам;
2. S(ABCD) = AB • BC = 18 • 6 = 108 сантиметров квадратных;
Значит, находим второй катет по теореме Пифагора.
100-64=36.
Катет равен 6.
Всё основание равно 12.
Площадь равна половине произведения стороны на высоту, проведённую к этой стороне.
То есть S=1\2*12*8=48.
3. Значит, катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы. То есть 6:2=3.
Находим высоту по теореме Пифагора.
36-9=25.
Высота равна 5.
Большее основание равно 16, так как трапеция равнобедренная.
Площадь равна произведению полусуммы оснований на высоту 1\2(10+16)*5= 65.
1. S(ABCD) = BC•CD = 6•3 = 18 квадратных сантиметров;
ответ: S(ABCD) = 18 квадратных сантиметров.
•Задание 6
1. Фигура ABCD - прямоугольник, следовательно все углы равняются 90°. Рассмотрим треугольник ACD - прямоугольный, так как угол ADC = 90°, угол ACD = 60°, следовательно угол CAD = 90° - угол ACD = 30°;
2. Рассмотрим прямоугольный треугольник ACD, по теореме об угле в 30° (угол, противолежащий углу в 30° равен половине гипотенузы) CD = AC/2 = 12/2 = 6см;
3. S(ABCD) = AD•CD = 10•6 = 60 квадратных сантиметров;
ответ: S(ABCD) = 60 квадратных сантиметров.
•Задание 7
1. По условию фигура ABCD - прямоугольник, но так как дано, что BC = AB следует, что ABCD - квадрат;
2. P=28см, периметр квадрата равняется сумме всех его сторон, то есть P(ABCD) = 4AB (так как все 4 стороны равны), то есть 28 = 4AB, следовательно AB = 7см. Так как ABCD - квадрат и все его стороны равны: AB = BC = CD = AD = 7 см;
3. S(ABCD) = AB в квадрате = 49 сантиметров квадратных;
ответ: S(ABCD) = 49 сантиметров квадратных.
•Задание 8
1. Исходя из данных выражений составим систему:
AB = 3BC
AB-BC = 12
Подставим значение AB из первого выражения:
3BC - BC = 12
2BC = 12
BC = 6см, тогда AB=3BC = 18 сантиметрам;
2. S(ABCD) = AB • BC = 18 • 6 = 108 сантиметров квадратных;
ответ: S(ABCD) = 108 сантиметров квадратных.