1.По теореме Пифогора находим: Гипотенуза в кв=(15*15)+(3*3) Гипотенуза в кв=225+9 Гипотенуза в кв=234 Гипотенуза=3√26
S=(15*3)/2=45/2=22,5
2.S=(15*12)/2=180/2=90
Для того,чтобы найти Р ,сначала нужно найти сторону ромба. Итак, у ромба диагонали перпендикулярны и точкой пересечения делятся пополам. В итоге получаются четыре прямоугольных треугольника. Нам понадобится только одна. Итак,обозначим треугольник ACB,где угол С=90, АС=7,5; СВ=6. Тогда,по тереме Пифагора: АВ в кв=(7,5*7,5)+(6*6) АВ в кв=56,25+36 АВ в кв=92,25 АВ=15√41
Пусть ABC - прямоугольный треугольник с катетами AC и BC, AB - гипотенуза. CD - высота, опущенная на гипотенузу. AD = 5 cм BD = 20 см AB = AD + BD = 25 (cм) по теореме Пифагора: AC² + BC² = AB² AC² + BC² = 25² AC² + BC² = 625
Из прямоугольного треугольника ACD: AD и CD - катеты, AC - гипотенуза. По теореме Пифагора: CD² + AD² = AC² AC² = 5² + CD² AC² = 25 + CD²
Из прямоугольного треугольника BCD: BD и CD - катеты, BC - гипотенуза. По теореме Пифагора: BD² + CD² = BC² BC² = 20² + CD² BC² = 400 + CD²
Гипотенуза в кв=(15*15)+(3*3)
Гипотенуза в кв=225+9
Гипотенуза в кв=234
Гипотенуза=3√26
S=(15*3)/2=45/2=22,5
2.S=(15*12)/2=180/2=90
Для того,чтобы найти Р ,сначала нужно найти сторону ромба. Итак, у ромба диагонали перпендикулярны и точкой пересечения делятся пополам. В итоге получаются четыре прямоугольных треугольника. Нам понадобится только одна. Итак,обозначим треугольник ACB,где угол С=90, АС=7,5; СВ=6. Тогда,по тереме Пифагора:
АВ в кв=(7,5*7,5)+(6*6)
АВ в кв=56,25+36
АВ в кв=92,25
АВ=15√41
Тогда Р=15√41*4=60√41
AD = 5 cм
BD = 20 см
AB = AD + BD = 25 (cм)
по теореме Пифагора:
AC² + BC² = AB²
AC² + BC² = 25²
AC² + BC² = 625
Из прямоугольного треугольника ACD: AD и CD - катеты, AC - гипотенуза.
По теореме Пифагора:
CD² + AD² = AC²
AC² = 5² + CD²
AC² = 25 + CD²
Из прямоугольного треугольника BCD: BD и CD - катеты, BC - гипотенуза.
По теореме Пифагора:
BD² + CD² = BC²
BC² = 20² + CD²
BC² = 400 + CD²
AC² + BC² = 625 ⇒ 25 + CD² + 400 + CD² = 625
2*CD² = 625 - 400 - 25
2* CD² = 200
CD² = 100
CD = √100
CD = 10 (cм)
Высота равна 10 см