Если радиус окружности равен 8 см и угол CАО равен 45 градусам то Найдите площадь заштрихованного сегмента А)(16П-8), Б)(16П-32), В)(16П-4), Г)(16П-2), Д)16П
Найдите площадь сектора образованного 60 градусами центральным угла окружности если длина окружности равен 12П см
А)36П, Б)18П, В)12П, Г)6П, Д)4П
Допустим что углы 1 и 2 равны. Отложим от луча МN угол PMN,равный углу 2,так чтобы угол PMN и угол 2 были накрест лежащими углами при пересечениии прямых MP и В секущей MN.По построению эти накрест лежащие углы равны, потому MPIIB.Мы получили, что через точку М проходят две прямые (прямые А и MP),паралелельные прямой В. Но это противоречит аксиоме параллельных прямых. Значит наше допущение НЕВЕРНО и угол 1 = 2.
2) Пусть катет CA = 5x, катет CB = 12x. По теореме Пифагора AВ² = AС²+BC² =25x²+144x²=169x²
169x² = 26²
x=√(26²/169)=26/13 = 2
3)Пусть сторона квадрата равна x. Тогда по теореме Пифагора x² +x² = (4√2)²
2x² = 16*2
x² = 16
x = 4
4) Пусть неизвестная сторона прямоугольника равна x. Тогда по теореме Пифагора x² +8² = 17²
x² = 17²-8²=289 - 64 = 225
x = 15
Тогда периметр прямоугольника равен: P = (15 + 8)*2 = 46
5) Из вершины С опустим высоту CH. Она будет равна стороне трапеции AC. ABCH - прямоугольник. Тогда AH = BC.
HD = AD - BC = 8,5 - 4 = 4,5.
По теореме Пифагора из треугольника HCD получим:
CD² = CH² +HD²
7,5² = CH² + 4,5²
CH² = 7,5²- 4,5² = (7,5-4,5)*(7,5+4,5) = 3*12 = 36
CH = 6
Т. к. AB = CH, то AB = 6.