Ну вообще-то по определению фигуры равны , если они совпадают при наложении. Если треугольники равны, то и все их соответствующие элементы при наложении совпадают. Но раз уж от Вас требуют еще какого-то доказательства, то можно и так: Пусть есть тр-ки АВС и А1 В1 С1 равны. Покажем, например, что биссектриса АН = биссектрисе А1 Н1. Для этого заметим, что треугольники АНВ и А1 Н1 В1 равны по ВТОРОМУ признаку равенства треугольников ( по стороне и двум прилегающим углам). Так же и про остальные биссектрисы.
У завданнях 1-6 виберіть правильну відповідь.
1. Яке з наведених висловлювань має такий самий зміст, що і висловлювання «Площини α і β мають спільну точку А»?
A. Площини α і β не мають інших спільних точок, крім точки A.
Б. Площини а і β можуть мати ще тільки одну спільну точку.
B. Площини α і β перетинаються по прямій, що проходить через точку A.
Г. Площини α і β перетинаються, і лінією їхнього перетину є відрізок із серединою в точці A.
2. Через яку з наведених фігур можна провести більше ніж одну площину?
A. Кінці однієї діагоналі паралелограма і середину іншої діагоналі.
Б. Діаметр кола і точку цього кола, що не належить діаметру.
B. Сторони кута, що не є розгорнутим.
Г. Середини всіх сторін трикутника.
3. Трапеція ABCD (BC і AD — основи трапеції) і ромб BCEF не лежать в одній площині. Які з наведених прямих є мимобіжними?
Но раз уж от Вас требуют еще какого-то доказательства, то можно и так:
Пусть есть тр-ки АВС и А1 В1 С1 равны.
Покажем, например, что биссектриса АН = биссектрисе А1 Н1.
Для этого заметим, что треугольники АНВ и А1 Н1 В1 равны по ВТОРОМУ признаку равенства треугольников ( по стороне и двум прилегающим углам).
Так же и про остальные биссектрисы.