соваслова слова словаслова слова слова лова слова слова слова слова словаслова слова слова слова слова словаслова слова словасоваслова слова словаслова слова слова лова слова слова слова слова словаслова слова слова слова слова словаслова слова словасоваслова слова словаслова слова слова лова слова слова слова слова словаслова слова слова слова слова словаслова слова слова соваслова слова словаслова слова слова лова слова слова слова слова словаслова слова слова слова слова словаслова слова словасоваслова слова словаслова слова слова лова слова слова слова слова словаслова слова слова слова слова словаслова слова слова2+2=4
BC = 5; AB = 10 => BC - AB*2, тоесть, катет равен половине гипотенузы, тоесть противоположный катету угол равен 30 градусов.
BC = AD*2 => <A = 30°
<B = 90-30 = 60°.
Высота DC — образовывает 2 прямых угла — <BDC == <ADC = 90°.
<ADC = 90° => <BCD = 90-60 = 30°.
Вывод: <BCD = 30°.
132.
Как мы видим — <DOC & <AOB — вертикальные углы, тоесть друг другу равны.
А по какому-то там признаку равенства прямоугольных треугольников: если катеты двух треугольников, и один острый угол из каждого из них — равен другому, то треугольники равны, что и означает, гипотенузы AO & OD — равны, тоесть: AO == OD = 12.
Вывод: OD = 12.
134.
Так как в треугольниках EFK & DAK — есть 2 равных угла(<FEK; <AKD), и 2 равных стороны(BF; DA), то по признаку равеснства треугольников: ΔEFB == ΔDAK, тоесть — их гипотенузы равны.
И так как накрест лежащие углы также другу равны, то стороны EF & DK — параллельны, по первому признаку параллельности прямых.
Так как <FEK == <AKD, то: <DEK == <EFK, тоесть, накрест лежащие углы друг другу равны, что и означает, что: DE ║FK. И так как в нашем четырёхугольнике — противоположные стороны попарно параллельны, то четырёхугольник — параллелограмм, а в параллелограмме — противоположные стороны равны, тоесть: DE == FK.
соваслова слова словаслова слова слова лова слова слова слова слова словаслова слова слова слова слова словаслова слова словасоваслова слова словаслова слова слова лова слова слова слова слова словаслова слова слова слова слова словаслова слова словасоваслова слова словаслова слова слова лова слова слова слова слова словаслова слова слова слова слова словаслова слова слова соваслова слова словаслова слова слова лова слова слова слова слова словаслова слова слова слова слова словаслова слова словасоваслова слова словаслова слова слова лова слова слова слова слова словаслова слова слова слова слова словаслова слова слова2+2=4
143.
<D = 90° => <M = 90-60 = 30°.
По теоереме 30-градусного угла прямогуольного треугольника: Катет, противолежащий углу 30-градусов в прямоугольном треугольнике — равен половине гипотенузы.
Тоесть: DS = MD/2 => MD = DS*2 = 28*2 = 56.
Вывод: MD = 56.
144.
<BDA = 120° => <ADC = 60° => <DAC = 30° => DC = AD/2 = 12/2 = 6.
<BDA = 120° => <BAD = 180-(<BDA + <ABD) = 30° => <BAD == <ABD = 30°.
<BAD == <ABD => AD == BD = 12.
BD + DC = 12+6 = 18. (Первая картинка)
Вывод: Катет BC = 18.
145.
BC = 5; AB = 10 => BC - AB*2, тоесть, катет равен половине гипотенузы, тоесть противоположный катету угол равен 30 градусов.
BC = AD*2 => <A = 30°
<B = 90-30 = 60°.
Высота DC — образовывает 2 прямых угла — <BDC == <ADC = 90°.
<ADC = 90° => <BCD = 90-60 = 30°.
Вывод: <BCD = 30°.
132.
Как мы видим — <DOC & <AOB — вертикальные углы, тоесть друг другу равны.
А по какому-то там признаку равенства прямоугольных треугольников: если катеты двух треугольников, и один острый угол из каждого из них — равен другому, то треугольники равны, что и означает, гипотенузы AO & OD — равны, тоесть: AO == OD = 12.
Вывод: OD = 12.
134.
Так как в треугольниках EFK & DAK — есть 2 равных угла(<FEK; <AKD), и 2 равных стороны(BF; DA), то по признаку равеснства треугольников: ΔEFB == ΔDAK, тоесть — их гипотенузы равны.
И так как накрест лежащие углы также другу равны, то стороны EF & DK — параллельны, по первому признаку параллельности прямых.
Так как <FEK == <AKD, то: <DEK == <EFK, тоесть, накрест лежащие углы друг другу равны, что и означает, что: DE ║FK. И так как в нашем четырёхугольнике — противоположные стороны попарно параллельны, то четырёхугольник — параллелограмм, а в параллелограмме — противоположные стороны равны, тоесть: DE == FK.