рассмотрим треугольники СВО и ОВД мы видим что СО = ОД по условию задачи , углы прямые (СОВ = ДОВ) сторона ОВ общая , значит треугольники СОВ и ДОВ равны по двум сторонам и углу между ними то есть по 1 признаку равенства треугольников . Рассмотрим треугольники АОС и АОД , АО- общая сторона , СО = ОД по условию задачи , а углы равные ( по свойству смежных углов и вертикальных углов) значит треугольники АОС = АОД по двум сторонам и углу между ними то есть тоже по 1 признаку равенства треугольников. Теперь если треугольник АОС = треугольнику АОД и треугольник СОВ = треугольнику ДОВ значит треугольники АВС и АВД равные
Там получается новый треугольник с основанием АД и вершиной С. Треугольник АСД. Найдем сначала угол А. Все мы знаем, что сумма углов треугольника равна 180 градусов. Получаем, что угол С=60, угол В=50, 60+50= 110. 180-110=70. Угол А=70 градусам. По первому закону равенства треугольников (по двум сторонам и углу между ними) мы понимаем, что в полученном треугольнике ВСД угол С равен углу Д. У нас есть точка В с двумя смежными углами, один угол = 50, а второй (т.к. смежный 180-50) равен 130 градусам. В треугольнике ВСД угол В=130 градусам. А по первому закону получается, что С и Д равны, и равны 25 градусам (180-130=50. 50/2=25). Нам дано, что угол С=60, прибавляем еще 25 градусов. Получаем, что угол С в треугольнике АСД теперь равен 85 градусам.
рассмотрим треугольники СВО и ОВД мы видим что СО = ОД по условию задачи , углы прямые (СОВ = ДОВ) сторона ОВ общая , значит треугольники СОВ и ДОВ равны по двум сторонам и углу между ними то есть по 1 признаку равенства треугольников . Рассмотрим треугольники АОС и АОД , АО- общая сторона , СО = ОД по условию задачи , а углы равные ( по свойству смежных углов и вертикальных углов) значит треугольники АОС = АОД по двум сторонам и углу между ними то есть тоже по 1 признаку равенства треугольников. Теперь если треугольник АОС = треугольнику АОД и треугольник СОВ = треугольнику ДОВ значит треугольники АВС и АВД равные