Треугольник АВС равносторонний, АВ=ВС=АС=а, площадьАВС=а в квадрате*корень3/4,квадраты, постороенные на сторонах равны, сторона квадрата=а, площадь квадрата=а*а=а в квадрате, площадь 3-х квадратов=3*а в квадрате, соединяя вершины квадртатов получим три равнобедренных треугольника, где две стороны=а, а угол между ними=120,( 360-2 угла по 90-угол треугольника=60., 360-90-90-60=120,), площадь равнобедренного треугольника=1/2сторона в квадрате*sin120=1/2*а в квадрате*корень3/2=а в квадрате*корень3/4, общая площадь шестиугольника=площадьАВС+площадь квадратов+площадь равнобедренных треугольников=а в квадрате*корень3/4+3*а вквадрате+3*а в квадрате*корень3/4=3*а в квадрате+а в квадрате*корень3
Так как трапеция равнобедренная, оба её острых угла при основании АD равны 45°.
Из С проведем СМ параллельно АВ (М принадлежит АD).
АВСМ - параллелограмм, ⇒ его противоположные стороны равны.
АМ=ВС ⇒ МD=АD-AM=16-8= 8
В ∆ МСD ∠СМD=∠ВАD=45°, как углы при параллельных АВ и СМ и секущей АD.
Так как в ∆ МСD два угла равны 45°, ∠ MCD= 90° ⇒
∆ МСD - равнобедренный прямоугольный,
Высота (и медиана) СН в нем по свойству медианы прямоугольного треугольника равна половине гипотенузы МD. СН=4 см.
S (ABCD)=(8+16)•4:2=48 см²