Если боковые грани наклонены к плоскости основания под одинаковым углом (в данном случае α), то высота пирамиды проходит через центр окружности вписанной в основании.
S(осн) =b*b*sinβ =b²sinβ.
С другой стороны S(осн) =p*r =(4b/2)*r =2b*r⇒r =b²sinβ/2b = bsinβ/2.(Это можно было написать сразу).
S(бок) =4*b*h/2=2bh , где h апофема боковой грани.
r =h*cosα ⇒h =r/cosα = (bsinβ/2)/cosα =bsinβ/(2cosα) .
Следовательно: S(бок)=2bh=2b*(bsinβ/(2cosα)) = b²sinβ/sinα (И это можно было написать сразу).
чертежи в приложении
задача 1
Боковая сторона равна 11 см.
Большее основание равно 15 см.
Меньшее основание равно 5 см.
Объяснение:
пусть ВС -меньшее основание =х, тогда АД=3х и АВ=СД=х-+6
периметр -это сумма длин всех сторон ,значит:
АВ+ВС+СД+АД=Р
(х+6)+х+(х+6)+3х=42
6х=30
х=5 и=ВС , тогда АД=3х=15, АВ=СД=х+6=5+6=11
Проверка (для себя): 11+5+11+15=42
задача 2
43 см
Объяснение: чертеж в приложении
1) рассм четырехугольник NBCD - параллелограмм , тк ВС||ND (ведь основания трапеции параллельны ), BN||CD (по усл). тогда ND =ВС=4 и
2) СД=BN (как стороны параллелограмма )
3) Р трапеции =АВ+ВС+СД+АД= АВ+ВС+BN+AN+ND=АВ+ВС+BN+AN+BC=
=АВ+BN+AN+2*BC=Pтреуг+2*ВС=35+2*4=43
Если что-то непонятно , пишите в комментах.
Успехов в учёбе! justDavid
Объяснение:
S(пол) = S(осн)+S(бок) .
Если боковые грани наклонены к плоскости основания под одинаковым углом (в данном случае α), то высота пирамиды проходит через центр окружности вписанной в основании.
S(осн) =b*b*sinβ =b²sinβ.
С другой стороны S(осн) =p*r =(4b/2)*r =2b*r⇒r =b²sinβ/2b = bsinβ/2.(Это можно было написать сразу).
S(бок) =4*b*h/2=2bh , где h апофема боковой грани.
r =h*cosα ⇒h =r/cosα = (bsinβ/2)/cosα =bsinβ/(2cosα) .
Следовательно: S(бок)=2bh=2b*(bsinβ/(2cosα)) = b²sinβ/sinα (И это можно было написать сразу).
Окончательно :
S(пол) = b²sinβ+ b²sinβ/sinα =b²sinβ(1+ 1/sinα)=b²(sinβ/sinα)*(1+ sinα).
ответ: b²(sinβ/sinα)*(1+ sinα).
1+sinα = 1+cos(π/2 -α) =2cos²(π/4 -α/2).
1+sinα =sinπ/2 +sinα =...
списано вот здесь