Решение Площадь боковой поверхности призмы равна произведению ее высоты на периметр основания. Сумма углов при одной стороне параллелограмма равна 180° Следовательно, < АВС = 180° - 30° = 150° Пусть АВ = 4см ВС = 4√3 см Найдем по теореме косинусов диагональ основания АС. АС² = АВ² + ВС² - 2*АВ*ВС* cos (150°) косинус тупого угла - число отрицательное. АС² = 16 + 48 + [32√3*(√3)]/2=112 АС = √112 = 4√7 Высота призмы СС₁ = АС / ctg(60°)=(4√7) / 1/√3 CC₁ = 4√21 Площадь боковой поверхности данной призмы S = H*P = 4√21*2(4+4√3) = 32√21*(1+√3) см² ответ: 32√21*(1+√3) см²
Решение
Площадь боковой поверхности призмы равна произведению ее высоты на периметр основания.
Сумма углов при одной стороне параллелограмма равна 180°
Следовательно, < АВС = 180° - 30° = 150°
Пусть АВ = 4см
ВС = 4√3 см
Найдем по теореме косинусов диагональ основания АС.
АС² = АВ² + ВС² - 2*АВ*ВС* cos (150°)
косинус тупого угла - число отрицательное.
АС² = 16 + 48 + [32√3*(√3)]/2=112
АС = √112 = 4√7
Высота призмы
СС₁ = АС / ctg(60°)=(4√7) / 1/√3
CC₁ = 4√21
Площадь боковой поверхности данной призмы
S = H*P = 4√21*2(4+4√3) = 32√21*(1+√3) см²
ответ: 32√21*(1+√3) см²
Відповідь:
Пояснення:
3)
Гипотенуза прямоугольного триугольника равна диаметру описаной окружности NM=2×OM=26
Из теореми Пифагора KN^2=NM^2-KM^2= 676-576 =100 → KN=10
P=10+26+24=60
52)
P=2×40=80 из свойст описаной окружности в четирехугольник, сумми противоположних сторон равни
54) сумма противоположних углов равна 180°
/_N=180-75=105°
/_М=180-53=127° (качество фото не очень, если ошиблась в углах, подставь правильний)
16)
По теореме Пифагора
20^2=(8+r)^2+(12+r)^2
400=64+16r+r^2+144+24r+r^2
400=208+2r^2+40r
2r^2+40r-192=0
r^2+20-96=0
r= -10± 14
Так как значение радиуса >0, то
r=4