Это !
1. в треугольниках abc и def угол b равен углу e, ab=8см, bc=4см, de=20см, ef=10см. являются ли эти треугольники подобными?
2. треугольники abc и mod подобны. ab=10, мо=12, вс=3, угол в=43°. найдите угол о и сторону оd.
3. в треугольнике авс ad биссектриса. ав=6, ас=10, bd=3. найти вс.
4. разность сторон ав и ас треугольника авс равна 9 см. ак – биссектриса угла а треугольника авс, вк: кс=4: 7. найдите ав и ас
Найти: проекцию меньшего катета на гипотенузу.
Решение:
--- 1 ---
Гипотенуза по т. Пифагора
√(7² + 24²) = √(49 + 576) = √625 = 25
--- 2 ---
Площадь треугольника АСД через катеты
S = 1/2*7*24 = 7*12 = 84 см²
Площадь треугольника АСД через гипотенузу и высоту
S = 1/2*25*ВД = 25/2*ВД
Приравниваем
25/2*ВД = 84
ВД = 168/25
--- 3 ---
В ΔАВД по т. Пифагора
7² = (168/25)² + АВ²
АВ² = (7*25/25)² - (168/25)² = (175/25)² - (168/25)² = (175 - 168)(175 + 168)/25² = 7*343/25² = 49²/25²
AB = 49/25
Всё :)
Дана окружность с центром О и её диаметры AB и CD. Определи периметр треугольника AOD, если CB — 14 см, AB — 60 см.
Объяснение:
Рассмотрим ∆АОD и ∆СОВ. ОА = ОВ = СО = OD (радиусы одной окружности), углы СОВ и АOD равны, так как вертикальные, тогда ∆АОD = ∆СОВ по двум сторонам и углу между ними.
CO < CD в два раза, так как радиус меньше диаметра окружности. Поэтому, СО = ОВ = 50 см:2 = 25 см. P∆COB = 25 см+ 25см + 5 см = 55 см = P∆AOD.
1. Все радиусы одной окружности имеют равную длину.
2. AOD = COB.
3. Paod = 55 см.