Трапеция равнобедренная AB=CD.
AC=6√3
∠A=60°
В равнобедренной трапеции прилежащие к боковой стороне углы дают в сумме 180°.
∠B=180°-60°=120°
Диагональ по условию делит острый угол ∠А пополам, значит ∠BAC=30°.
Рассмотрим ΔABC:
Сумма внутренних углов треугольника 180°.
∠ABC+∠BAC+∠ACB=180°
120°+30°+∠ACB=180°
∠ACB=30°
Так как ∠ACB=∠BAC, ΔACB – равнобедренный. Значит боковые стороны и меньшее основание равны, AB=CD=BC.
По теореме синусов, стороны пропорциональны синусам противолежащего угла.
AB=6
Следовательно, AB=BC=CD=6.
∠B=∠C, потому что это равнобедренная трапеция.
∠ACD=∠C-∠ACB
∠ACD=120°-30°=90°
Значит ΔACD – прямоугольный, где угол ∠ACD – прямой.
По теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов.
AD²=AC²+CD²
P=AB+BC+CD+AD
P=6+6+6+12=30
Трапеция равнобедренная AB=CD.
AC=6√3
∠A=60°
В равнобедренной трапеции прилежащие к боковой стороне углы дают в сумме 180°.
∠B=180°-60°=120°
Диагональ по условию делит острый угол ∠А пополам, значит ∠BAC=30°.
Рассмотрим ΔABC:
Сумма внутренних углов треугольника 180°.
∠ABC+∠BAC+∠ACB=180°
120°+30°+∠ACB=180°
∠ACB=30°
Так как ∠ACB=∠BAC, ΔACB – равнобедренный. Значит боковые стороны и меньшее основание равны, AB=CD=BC.
По теореме синусов, стороны пропорциональны синусам противолежащего угла.
AB=6
Следовательно, AB=BC=CD=6.
∠B=∠C, потому что это равнобедренная трапеция.
∠ACD=∠C-∠ACB
∠ACD=120°-30°=90°
Значит ΔACD – прямоугольный, где угол ∠ACD – прямой.
По теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов.
AD²=AC²+CD²
P=AB+BC+CD+AD
P=6+6+6+12=30
BC:AC:AB=2:6:7 ВС=2х, АС=6х, АВ=7х
AB=BC+25 (см) Так как: АВ=ВС+25
7х = 2х+25
Найти: Р=? 5х = 25
х = 5
ВС=2х=10 (см), АС=6х=30(см), АВ=7х=35 (см)
Р = 10+30+35 = 75 (см)
ответ: 75 см