Можна розв'язувати двома : виконати побудову, або скористатись формулами радіусів. З побудовою швидше.
Отже, якщо побудувати сторону і кола та провести радіуси, отримаємо прямокутний трикутник з гіпотенузою 6 коренів з 3 і катетом 9 у якому прилеглий кут є половиною центрального кута даного многокутника .
Косинус цього кута дорівнює 9 поділити на 6 корінь 3, тобто корінь 3 на 2. Це кут 30 градусів, а отже центральний кут 30 *2= 60 гр.
Многокутник правильний отже його центральний кут дорівнює 360 гр. поділити на кількість сторін. Ділимо 360 на 60 , маємо 6 ( сторін).
Можна розв'язувати двома : виконати побудову, або скористатись формулами радіусів. З побудовою швидше.
Отже, якщо побудувати сторону і кола та провести радіуси, отримаємо прямокутний трикутник з гіпотенузою 6 коренів з 3 і катетом 9 у якому прилеглий кут є половиною центрального кута даного многокутника .
Косинус цього кута дорівнює 9 поділити на 6 корінь 3, тобто корінь 3 на 2. Це кут 30 градусів, а отже центральний кут 30 *2= 60 гр.
Многокутник правильний отже його центральний кут дорівнює 360 гр. поділити на кількість сторін. Ділимо 360 на 60 , маємо 6 ( сторін).
Объяснение:
Итоговая контрольная работа(Решите хотя бы три)
1. Основание конуса совпадает с одним из оснований цилиндра, а вершина конуса с центром
другого основания цилиндра. Во сколько раз площадь осевого сечения цилиндра больше
площади осевого сечения конуса?
2. Все рёбра треугольной пирамиды равны 1. Рассмотрите сечение этой пирамиды плоскостью,
параллельной двум противоположным (скрещивающимся) рёбрам пирамиды. Как называется
многоугольник, получившийся в сечении? Чему равен его периметр? В каких пределах
меняется его площадь?
3. Найдите радиус шара, касающегося трёх граней единичного куба и вписанного в этот куб
шара.
4. Отрезок, длина которого равна 1, образует угол в 45° с одной из гранью прямого двугранного
угла, и он же образует угол в 30° с другой гранью этого же двугранного угла. Найдите длину
проекции этого отрезка на ребро двугранного угла.
5. Высота пирамиды равна 1, все двугранные углы при основании равны 45°, периметр
многоугольника, расположенного в основании, равен 2р. Найдите площадь этого
многоугольника. При каких р такая пирамида возможна?
6. В основании треугольной пирамиды АВСD лежит правильный треугольник АВС. Найдите его
стороны, если известно, что все боковые грани этой пирамиды равновелики и ВD = СD = 1,
АD = 2
Объяснение: