Площадь полной поверхности призмы равна 4 боковым +верх+низ = 4х32+16+16= 160 см. кв.
Объяснение:
Площадь основания 16, в основании квадрат, т.к. призма правильная, значит сторона квадрата 4.
т.к. угол диагонали с основанием 60 градусов, то второй угол с верхней поверхностью 30, т.к сумма углов 180.
Раз угол 30 в два раза меньше 60, от и сторона напротив угла в два раза меньше и равна 4, значит сторона напротив угла в 60 градусов в два раза больше 4, т.е. 8, получается, что стороны прямоугольника боковой поверхности призмы 4 и 8 см, а значит площадь боковой поверхности 32 см. кв.
А площадь полной поверхности призмы равна 4 боковым +верх+низ = 4х32+16+16= 160 см. кв.
Дан вектор m (-4; 5; 7) и вектор n (-3, 15, -25).
Пусть вектор a имеет координаты (x1; y1; z1) , а вектор b (x2; y2; z2) .
По условию х2 + х1 = -4
х2 - х1 = -3
2х2 = -7 , х2 = -7/2 = -3,5.
х1 = -4 - (-3,5) = -0,5.
Аналогично: y2 + y1 = 5
y2 - y1 = 15
2y2 = 20, y2 =20/2 = 10.
y1 = 5 - 10 = -5.
z2 + z1 = 7
z2 - z1 = -25
2z2 = -18, z2 = -18/2 = -9,
z1 = 7 - (-9) = 16.
Площадь полной поверхности призмы равна 4 боковым +верх+низ = 4х32+16+16= 160 см. кв.
Объяснение:
Площадь основания 16, в основании квадрат, т.к. призма правильная, значит сторона квадрата 4.
т.к. угол диагонали с основанием 60 градусов, то второй угол с верхней поверхностью 30, т.к сумма углов 180.
Раз угол 30 в два раза меньше 60, от и сторона напротив угла в два раза меньше и равна 4, значит сторона напротив угла в 60 градусов в два раза больше 4, т.е. 8, получается, что стороны прямоугольника боковой поверхности призмы 4 и 8 см, а значит площадь боковой поверхности 32 см. кв.
А площадь полной поверхности призмы равна 4 боковым +верх+низ = 4х32+16+16= 160 см. кв.