Фигура № 1
1) (- 8; 1), (- 6; 2), (- 2; 0), (1; 2), (5; 1), (7; - 4), (9; - 3).
2) (- 2; 6), (0; 8), (3; 7), (5; 5), (7; 7).
3) (1; 2), (3; 9), (3; 10), (4; 11), (5; 11), (6; 10), (6; 9), (5;
8), (4; 8), (3; 9).
1) 2) 3) пункты между собой не соединять
Фигура № 2
(0; 0), (- 3; 0), (- 3; - 1), (4; - 1), (4; 0), (1; 0), (6; 6), (0;
10), (1; 11), (- 2; 13), (- 3; 12), (- 7; 12), (0; 5), (0; 9), (5;
6), (0; 0).
если x не равно 0, то разделив левую и правую части уравнения на x, получим
m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b
Следовательно, если a и b не коллинеарны то такого числа не существует.
А в нашем примере такое число есть (при x не равном 0).
Следовательно если x не равно 0, то векторы коллинеарны.
А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0.
ответ: x = 0 и y = 0
Пусть угол при основании х, тогда угол между высотой и боковой стороной равнобедренного треугольника равен (х-15°).
Угол при вершине в два раза больше 2(х-15°)
Сумма углов треугольника равна 180°
х+ х+2·(х-15°)=180°
4х=210°
х=52,5°
х-15°=52,5-15=37,5°
Угол при вершине равнобедренного треугольника в 2 раза больше, так как высота равнобедренного треугольника является также и биссектрисой.
ответ. углы при основании 52,5°; 52,5° и угол при вершине 75°