пирамида КАВС, К -вершина , в основании равносторонний треугольник АВС, О-центр основания =пересечение медиан=высот=биссектрис, проводим высоту ВН на АС, уголКВО=45, КО=высота пирамиды=4*корень3, треугольник КВО прямоугольный, уголВКО=90-уголКВО=90-45=45, треугольник КВО равнобедренный, КО=ВО=4*корень3, ВН-медиана, которая в точке пересечения делится в отношении 2/1 начиная от вершины, ВО=2 части, ОН=1 часть=ВО/2=4*корень3/2=2*корень3, ВН=ВО+ОН=4*корень3+2*корень3=6*корень3, АВ=ВС=АС=2*ВН*корень3/3=2*6*корень3*корень3/3=12, площадьАВС=АС в квадрате*корень3/4=144*корень3/4=36*корень3, объем=1/3*площадьАВС*КО=1/3*36*корень3*4*корень3=144
Аксиома - это утверждение о свойствах геом.фигур, принимаемое без доказательства. Например: через любые две точки можно провести прямую и при том только одну.
Обратная теорема - это утверждение, в котором условие исходной теоремы (прямого утверждения) поставлено заключением, а заключение — условием. Например: теорема - если два угла смежные, их сумма равна 180 градусов, а обратная ей - если сумма двух углов равна 180 градусов, то эти углы смежные.
пирамида КАВС, К -вершина , в основании равносторонний треугольник АВС, О-центр основания =пересечение медиан=высот=биссектрис, проводим высоту ВН на АС, уголКВО=45, КО=высота пирамиды=4*корень3, треугольник КВО прямоугольный, уголВКО=90-уголКВО=90-45=45, треугольник КВО равнобедренный, КО=ВО=4*корень3, ВН-медиана, которая в точке пересечения делится в отношении 2/1 начиная от вершины, ВО=2 части, ОН=1 часть=ВО/2=4*корень3/2=2*корень3, ВН=ВО+ОН=4*корень3+2*корень3=6*корень3, АВ=ВС=АС=2*ВН*корень3/3=2*6*корень3*корень3/3=12, площадьАВС=АС в квадрате*корень3/4=144*корень3/4=36*корень3, объем=1/3*площадьАВС*КО=1/3*36*корень3*4*корень3=144
Аксиома - это утверждение о свойствах геом.фигур, принимаемое без доказательства. Например: через любые две точки можно провести прямую и при том только одну.
Теорема - это утверждение, требующее доказательства. Например: теорема Пифагора - квадрат гипотенузы равен сумме квадратов катетов.
Обратная теорема - это утверждение, в котором условие исходной теоремы (прямого утверждения) поставлено заключением, а заключение — условием. Например: теорема - если два угла смежные, их сумма равна 180 градусов, а обратная ей - если сумма двух углов равна 180 градусов, то эти углы смежные.