Пусть ABCD – трапеция, CD = 2 см, АВ = 3 см, BD = 3 см и АС = 4 см. Чтобы известные элементы включить в один треугольник, перенесём диагональ BD на вектор DC в положение СВ'. Рассмотрим треугольник АСВ1. Так как ВВ'CD – параллелограмм, то В'С = 3 см, АВ' = АВ + ВВ' = АВ + CD = 5 см. Теперь известны все три стороны треугольника АВ'С. Так как АС²+ В'С²= АВ'²= 16+9=25, то треугольник АВ'С – прямоугольный, причем АСВ' = 90°. Отсюда непосредственно следует, что угол между диагоналями трапеции, равный углу АСВ', составляет 90°. Площадь трапеции, как и всякого четырёхугольника, равна половине произведения диагоналей на синус угла между ними. Отсюда площадь равна 1/2AC * BD * sin 90° = 1/2 * 4 * 3 * 1 = 6 см²
Объяснение:
Дано: Док-во:
АО=ОС 1)Расм. АВО и ДОС:
<ВАО=<ОСД 1)АО=ОС
Док-ть: 2)<ВАО=<ОСД
АВО=ДОС 3)<АОВ=<ДОС( вертик)
АВ=ДС АВО=ДОС (по 2 признаку)
2)В равных треугольниках, напротив равных
<, лежат равные стороны: АВ=ДС